

SESQUITERPENES AND A PHENOLIC COMPOUND FROM THE LIVERWORT *OMPHALANTHUS FILIFORMIS*

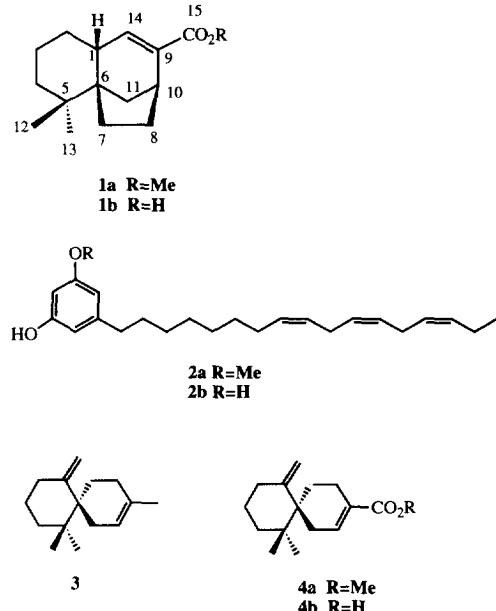
MOTOO TORI, KATSUYUKI NAKASHIMA and YOSHINORI ASAKAWA

Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro cho. Tokushima 770, Japan

(Received 1 July 1994)

Key Word Index—*Omphalanthus filiformis*; Hepaticae; lejeuneaceae; liverwort; methyl omphalate; methyl chamigrenate; omphalane-type sesquiterpene; chamigrane-type sesquiterpene.

Abstract—Methyl omphalate, a new rearranged chamigrane-type sesquiterpene, as well as previously known chamigrane-type sesquiterpenes and a phenolic compound have been isolated from the Colombian liverwort *Omphalanthus filiformis* and their structures determined by spectroscopic techniques.


INTRODUCTION

We have recently reported on the presence of interesting chemical constituents in liverworts collected in South America [1]. Thus africanane-type sesquiterpenoids were isolated from *Porella swartziana* from Colombia [2, 3], chenopodene, a compound with a new carbon skeleton, from *Marchantia chenopoda* from Venezuela [4] and spirodensifolins from *Frullanoides densifolia* from Bolivia [5]. GC-MS has been used to detect some steroids and sesquiterpenoids from *Omphalanthus paramicola* and *O. platycoleus* [6]. However, no compound has been isolated so far from this genus. We have investigated the chemical constituents of *O. filiformis* and found a new sesquiterpene having a novel carbon skeleton, methyl omphalate (**1a**) as a methyl ester, as well as a previously known long chain alkyl phenol (**2a**) [7, 8], β -chamigrene (**3**) [9, 10] and methyl chamigrenate (**4a**) [11–13].

RESULTS AND DISCUSSION

The ether extract of *O. filiformis* was purified by a combination of Sephadex LH-20 and silica gel CC. From the less polar frs β -chamigrene (**3**) was isolated. The polar frs were methylated with diazomethane, after the NMR of the residue was measured and the absence of methoxyl groups was confirmed. The methylated frs were further purified by silica gel CC and HPLC to afford methyl omphalate (**1a**), methyl chamigrenate (**4a**) and 5-heptadeca-8(Z),11(Z),14(Z)-triene-15-ol monomethyl ether (**2a**).

Compound **1a** exhibited a molecular ion peak at m/z 248 and was assigned the molecular formula $C_{16}H_{24}O_2$ by HR-mass spectrometry. Since the ^{13}C NMR spectrum contained 16 peaks, it had to be a sesquiterpene methyl ester. Three methyls (including a methoxyl group), six methylenes, three methines and four quaternary carbons were observed in DEPT spectra. The IR spectrum indi-

cated the presence of an α,β -unsaturated ester (1705 and 1640 cm^{-1}). As there was one olefin ($\delta 134.9$ and 142.4) and one carbonyl group ($\delta 167.6$) in the molecule and the degree of unsaturation was five, the compound had to be tricyclic. The 1H - 1H and ^{13}C - 1H COSY spectra suggested the partial structures (A) and (B) as shown in Fig. 1. The TOCSY spectrum revealed a further proton network as shown in the partial structure (C). The HMBC spectrum connected these partial structures to give a new rearranged chamigrane skeleton (Fig. 2). The stereochemistries were determined from the NOESY spectrum (Fig. 3). Thus methyl omphalate (**1a**) was established as an omphalane-type sesquiterpene ester as depicted in the formula. However, the absolute configuration was not

Table 1. NMR spectral data of methyl omphalate (**1a**) (600 MHz, CDCl_3)

C	^1H	^{13}C
1	2.21 <i>dt</i> , (12.7, 4.3)	45.1
2 α	1.19 <i>m</i>	30.0
2 β	ca 1.7 <i>m</i>	
3 α	1.51 <i>m</i>	21.6
3 β	1.56 <i>m</i>	
4 α	1.32 <i>td</i> (13.4, 3.9)	38.5
4 β	1.25 <i>m</i>	
5	—	34.5
6	—	48.0
7 α	1.78 <i>ddd</i> (13.2, 10, 3.4)	32.2
7 β	1.15 <i>m</i>	
8	1.66 <i>m</i>	35.3
9	1.68 <i>m</i>	
10	—	134.9
10	3.01 <i>t</i> (4.4)	37.4
11 α	1.58 <i>m</i>	30.2
11 β	1.44 <i>dd</i> (11.5, 4.4)	
12	0.93 <i>s</i>	23.5
13	0.87 <i>s</i>	25.8
14	6.58 <i>dd</i> (4.3, 0.6)	142.4
15	—	167.6
-OMe	3.72 <i>s</i>	51.5

determined. Thus the natural product was its free acid **1b**. A plausible biogenetic pathway is shown in Fig. 4. Compound **1a** is presumably derived from a chamigrane-type intermediate by ring contraction and cyclization. The numbering follows this hypothesis and we propose the name, omphalane, for this new skeleton.

Compound **2a** was isolated as a monomethyl ether, m/z 357 (CI-MS) [$\text{M} + 1$] $^+$, and was found to contain a

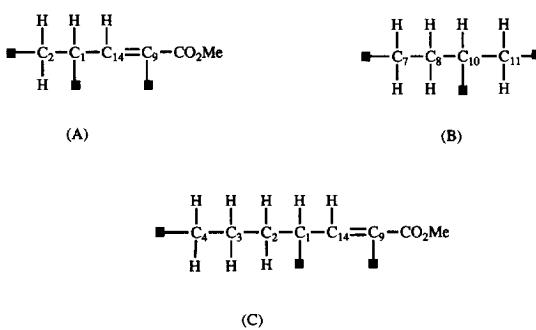
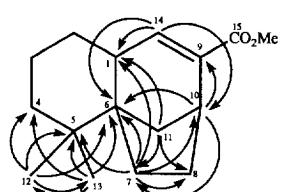



Fig. 1. Partial structures A–C of methyl omphalate (**1a**).

EXPERIMENTAL

¹H NMR: 400 or 600 MHz; ¹³C NMR: 100 MHz (in CDCl₃ soln, TMS as int. standard); CC: silica gel 60 (70–230 mesh, Merck) and Sephadex LH-20 (Pharmacia); TLC: silica gel 60 F₂₅₄ plates (Merck).

Omphalanthus filiformis (Sw.) Nees. (54 g) was collected in Colombia. The voucher specimen is deposited in the herbarium of Tokushima Bunri University. After drying, the material was ground and extracted with Et₂O to afford a crude extract (1.85 g). CC over Sephadex LH-20 (CHCl₃–MeOH, 1:1) afforded frs A–C. Fr. C was sepd by silica gel CC to yield a less polar fr. (379 mg) and a polar fr. (464 mg). The less polar fr. was further sepd by silica gel CC to afford β -chamigrene (3) (89 mg). The polar fr. was methylated with CH₂N₂ followed by CC on silica gel and HPLC to yield methyl chamigrenate (4a) (50 mg), 5-heptadeca-8(Z),11(Z),14(Z)-trietylresorsinol monomethyl ether (2a) (10 mg) and methyl omphalate (1a) (10 mg).

Methyl omphalate (1a). Oil; $[\alpha]_D^{22} + 74.5$ (CHCl₃; c 1.14); HRMS: Obs. *m/z* 248.1757. C₁₆H₂₄O₂ requires 248.1776; MS: *m/z* 248 [M⁺], 233 (100), 216, 201, 173, 160, 145, 131, 119, 105, 91, 77, 59 and 41; IR (FT): 1705 and 1640 cm⁻¹.

β -*Chamigrene* (2a). Oil; $[\alpha]_D^{22} + 81.7$ (CHCl₃; c 1.25) (lit. – 52.7°) [9].

Methyl chamigrenate (3). Oil; $[\alpha]_D^{22} + 99.5$ (CHCl₃; c 1.52).

5-Heptadeca-8(Z),11(Z),14(Z)-trietylresorsinol monomethyl ether (4a). Oil; MS (CI-¹³C₄H₁₀): *m/z* 357 [M + 1]⁺; δ_H (400 MHz, CDCl₃) 0.97 (3H, *t*, *J* = 7.3 Hz), 1.31 (8H, *m*), 1.58 (2H, *m*), 2.05 (4H, *m*), 2.51 (2H, *m*), 2.81 (4H, *m*), 3.76 (3H, *s*), 4.95 (1H, *br s*, -OH), 5.36 (6H, *m*), 6.23 (1H, *m*), 6.25 (1H, *br s*) and 6.32 (1H, *br s*); δ_C (100 MHz, CDCl₃) 14.3 (*q*), 20.6 (*t*), 25.5 (*t*), 25.6 (*t*), 27.2 (*t*), 29.2 (*t*), 29.3 (*t*), 29.4 (*t*), 29.6 (*t*), 31.1 (*t*), 36.0 (*t*), 55.3 (*q*), 98.7 (*d*), 106.8 (*d*), 107.9 (*d*), 127.2 (*d*), 127.7 (*d*), 128.3 (*d* × 3), 130.4 (*d*), 132.0 (*d*), 145.7 (*s*), 156.5 (*s*) and 160.8 (*s*); IR ν_{max} cm⁻¹: 3400, 1610, 1600, 1500, 1460 and 1440.

Acknowledgements—We thank Dr R. Gradstein (University of Utrecht, The Netherlands) for identification of the liverwort. We also thank Miss Y. Kan and Y. Okamoto for measurement of the 600 MHz NMR and mass spectra, respectively. This work was partly supported by a Grant-in-Aid for Cancer Research from the Ministry of Health and Welfare, Japan.

REFERENCES

1. Asakawa, Y. (1982) in *Progress in the Chemistry of Organic Natural Products* Vol. 42 (Herz, W., Grisebach, H. and Kirby, G. W., eds), p. 1. Springer, Wien.
2. Tori, M., Nakashima, K., Toyota, M. and Asakawa, Y. (1993) *Tetrahedron Letters* **34**, 3751.
3. Tori, M., Nakashima, K., Takeda, T. and Asakawa, Y. (1993) *Tetrahedron Letters* **34**, 3753.
4. Tori, M., Aoki, M. and Asakawa, Y. (1994) *Phytochemistry* **36**, 73.
5. Tori, M., Arbyanti, H., Taira, Z. and Asakawa, Y. (1993) *Phytochemistry* **32**, 335.
6. Gradstein, S. R., Matsuda, R. and Asakawa, Y. (1981) *J. Hattori Bot. Lab.* **50**, 231.
7. Reffstrup, T., Hammershoy, O., Boll, P. M. and Schmidt, H. (1982) *Acta Chem. Scand. B* **36**, 291.
8. Higa, T. (1981) in *Marine Natural Products* (Scheuer, P., ed.), p. 93. Academic Press, London.
9. Itô, S., Endo, K., Yoshida, T., Yatagai, M. and Kodama, M. (1967) *J. Chem. Soc., Chem. Commun.* 186.
10. Andersen, N. H., Bissonette, P., Liu, C.-B., Shunk, B., Ohta, Y., Tseng, C.-L. W., Moore, A., Huneck, S. (1977) *Phytochemistry* **16**, 1731.
11. Kuo, Y.-H. and Lin, Y.-T. (1980) *J. Chin. Chem. Soc.* **27**, 15.
12. Kuo, Y.-H., Yang, I.-C., Chen, C.-S. and Lin, Y.-T. (1987) *J. Chin. Chem. Soc.* **34**, 125.
13. Hikino, H., Hosaka, K., Ogawa, Y., Iketani, Y., Kubota, K. and Taguchi, H. (1985) *Jpn. Kokai Tokyo Koho*.