

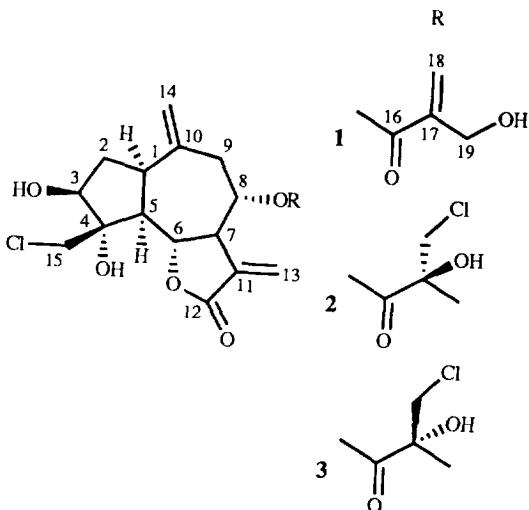
SESQUITERPENE LACTONES FROM *CENTAUREA ALBA* AND *C. CONIFERA*

ISABEL FERNÁNDEZ, JOSÉ R. PEDRO* and ESTHER POLO

Departament de Química, Orgánica, Facultat de Química, Universitat de València, 46100-Burjassot (València), Spain

(Received 22 June 1994)

Key Word Index—*Centaurea alba*, *C. conifera*; *Leuzea*; Compositae; sesquiterpenes; germacranolides; guianolides; eudesmane; loliolide.


Abstract—The aerial parts of *Centaurea alba* yielded five known germacranolides: salonitenolide, 11 β ,13-dihydro-salonitenolide, salonitenolide 8-*O*-(4'-acetoxy-5'-hydroxy)-angelate, cnicin 4'-*O*-acetate and cnicin. The aerial parts of *C. conifera* yielded loliolide, 1 β ,6 α -dihydroxy-4(15)-eudesmene, chlorojanerin, chlorohyssopifolin A (centaurepenin) and its C-17 epimer. The latter compound is described for the first time.

INTRODUCTION

In continuation of our work on Spanish Compositae [1-3], we have now investigated specimens of *Centaurea alba* L. and *C. conifera* L. [= *Leuzea conifera* (L.) DC.]. Previous work is limited to the mention that salonitenolide and cnicin were present in *C. alba* [4, 5]. Our own work on the aerial parts of this plant resulted in the isolation of salonitenolide [6, 7], 11 β ,13-dihydro-salonitenolide [8], salonitenolide 8-*O*-(4'-acetoxy-5'-hydroxy)-angelate [9], cnicin 4'-*O*-acetate [10] and cnicin [7]. With regards the species *C. conifera*, on which no chemical studies have been reported, we have found loliolide [1], 1 β ,6 α -dihydroxy-4(15)-eudesmene [11], chlorojanerin (1) [12, 13], chlorohyssopifolin A (centaurepenin) (2) [14, 15] and its C-17 epimer (3). This latter compound is described for the first time in this paper.

RESULTS AND DISCUSSION

Lactones 2 and 3 were obtained as a mixture and could not be separated. The CI-mass spectrum showed protonated molecular ion peaks at *m/z* 435, 437 and 439 indicating the presence of two chlorine atoms and the common molecular formula C₁₉H₂₄O₇Cl₂. The ¹H NMR of this mixture was very similar to that of chlorojanerin (1), a guianolide frequently found in *Centaurea* spp. [12, 13], except for the signals of the ester side-chain. Hydroxymethacrylate signals (two singlets at δ 6.33 and 5.95 of CH₂=C and a broad singlet at 4.38 of CH₂OH) in the ¹H NMR of chlorojanerin (1) were replaced by those of a 2-chloromethyl-2-hydroxypropionate residue [two doublets at δ 3.87 and 3.63 (*J* = 11.6 Hz) of CH₂Cl and a singlet at 1.55 of Me] in the ¹H NMR spectra of 2 and 3. The chemical shifts of the other protons were unchanged. Consequently, the struc-

ture of chlorohyssopifolin A (2) [14, 15] was assigned to the major component of the mixture of lactones. The chemical shifts in the ¹H NMR spectrum of the minor component were virtually identical to the chlorohyssopifolin A, with the exception of the signals of H-13 (δ 5.83 vs 5.57), H-14 (δ 4.82 vs 5.01), H-8 (δ 5.16 vs 5.21) and H-9 (δ 2.46 vs 2.48). These differences could be explained, as in related cases [16], by assuming that 3 was the C-17 epimer of chlorohyssopifolin A (2). Indeed, Dreiding models indicated that a change of stereochemistry at C-17 would have the greatest steric and anisotropic effects at H-13, H-14, H-8 and H-9, as indicated by Merill and Stevens [16].

Further characterization of 1-3 were obtained by ¹³C NMR spectra and heteronuclear multiple quantum correlation ¹H-¹³C (HMQC), which allowed us to assign unambiguously the signals of all the carbons. Thus, for 2,

*Author to whom correspondence should be addressed.

Table 1. ^1H NMR spectral data of compounds 1–3 (400 MHz, CDCl_3 , δ values, J in Hz).

H	1	2	3
1	3.61 <i>ddd</i> (10.8, 9.0, 8.5)	3.62 <i>ddd</i> (10.8, 9.0, 8.5)*	3.62 <i>ddd</i> (10.8; 9.0, 8.5)*
2	1.62 <i>dd</i> (15.0, 8.0)	1.59 <i>dd</i> (15.0; 7.2)	1.59 <i>dd</i> (15.0; 7.2)
2'	2.53 <i>ddd</i> (14.8, 11.2, 6.8)	2.55 <i>ddd</i> (15.0; 11.0; 6.4)	2.55 <i>ddd</i> (15.0; 11.0; 6.4)
3	4.17 <i>br d</i> (6.8)	4.17 <i>br d</i> (6.4)	4.17 <i>br d</i> (6.4)
5	2.32 <i>br t</i> (9.2)	2.31 <i>br t</i> (10.4)	2.31 <i>br t</i> (10.4)
6	4.73 <i>dd</i> (11.2, 9.2)	4.73 <i>tt</i> (10.8)	4.73 <i>t</i> (10.8)
7	3.16 <i>tt</i> (9.4, 3.3)	3.12 <i>tt</i> (9.6, 3.2)	3.12 <i>tt</i> (9.6; 3.2)
8	5.15 <i>ddd</i> (9.6, 5.2, 1.6)	5.16 <i>m†</i>	5.21 <i>ddd</i> (9.6; 4.0; 1.0)
9	2.65 <i>dd</i> (15.2, 5.2)	2.65 <i>dd</i> (15.6; 5.2)	2.65 <i>dd</i> (15.6; 5.2)
9'	2.44 <i>d</i> (15.2)	2.46 <i>d</i> (15.2)	2.48 <i>d</i> (16.0)
13	6.20 <i>d</i> (3.6)	6.24 <i>d</i> (3.2)	6.22 <i>d</i> (3.2)
13'	5.61 <i>d</i> (2.8)	5.83 <i>d</i> (3.2)	5.57 <i>d</i> (3.2)
14	5.14 <i>br s</i>	5.14 <i>br s</i>	5.16 <i>br s</i>
14'	4.82 <i>br s</i>	4.82 <i>br s</i>	5.01 <i>br s</i>
15	4.33 <i>d</i> (11.6)	4.34 <i>d</i> (12.0)	4.33 <i>d</i> (11.6)
15'	3.95 <i>d</i> (12.0)	3.96 <i>d</i> (12.0)	3.96 <i>d</i> (11.6)
18	6.33 <i>s</i>	3.87 <i>d</i> (11.6)	3.87 <i>d</i> (11.6)
18'	5.95 <i>s</i>	3.63 <i>d</i> (11.6)	3.64 <i>d</i> (11.6)
19	4.38 <i>br s</i>	1.55 <i>s</i>	1.55 <i>s</i>

*A part of this signal is overlapped with H-18'.

†Overlapped signal with H-14.

Table 2. ^{13}C NMR spectral data of compounds 1–3 (100 MHz, CDCl_3 , δ values)

C	1	2	3
1	47.1	47.1	47.3
2	37.7	38.0	38.0
3	77.2	77.2	77.2
4	84.5	84.7	84.7
5	57.5	57.6	57.5
6	76.2	76.1	76.1
7	46.4	46.6	46.5
8	74.1	76.0	76.0
9	35.1	34.7	34.6
10	142.1	142.0	141.9
11	168.6	168.4	168.4
12	136.7	136.5	136.9
13	122.8	123.2	122.3
14	118.0	118.2	118.5
15	49.9	50.0	50.0
16	165.3	173.0	173.0
17	139.2	76.0	75.9
18	126.8	51.2	51.0
19	62.3	23.9	23.4

δ 1.59 and 2.55 for H-2 and δ 2.65 and 2.46 for H-9, respectively. Finally, the signals at δ 50.0 (C-15) and 51.2 (C-18) correlated with a pair of doublets at δ 4.34 and 3.96 (H-15) and with another pair of doublets at δ 3.87 and 3.63 (H-18), respectively, and the signals at δ 123.2 (C-13) and δ 118.2 (C-14) correlated with two doublets at δ 6.24 and 5.83 (H-13) and two singlets at δ 5.14 and 4.82 (H-14), respectively.

The chlorinated sesquiterpene lactones isolated in this work from *C. conifera* are metabolites very characteristic of *C. solstitialis* [16, 17], a neurotoxic weed that causes a neurodegenerative disorder in horses, which is comparable to Parkinson's disease with respect to symptoms and pathology.

EXPERIMENTAL

HPLC: Lichrospher RP-18 (250 \times 8 mm), elution $\text{MeOH}-\text{H}_2\text{O}$ mixtures; NMR: Varian Unity 400 (inverse probehead); CI-MS (CH_4): Hewlett-Packard 5988A.

Plant material. Aerial parts of *C. alba* (1.0 kg) were collected in Saldes (Barcelona), Spain. *C. conifera* (1.7 kg) was collected in Altura (Castellón), Spain. Voucher specimens are deposited in the herbarium of the Botany Department (Faculty of Biological Sciences) of Valencia University.

Extraction and chromatography. The aerial parts were finely ground and extracted at room temp. with hexane-Et₂O-MeOH (1:1:1). The extracts were evapd *in vacuo* and the respective residues fractionated by CC on silica gel with hexane-(EtOAc or Et₂O)-MeOH mixtures of increasing polarity. The residue from the *C. alba* fr. eluted with EtOAc-MeOH (4:1) was further sepd by flash chromatography on silica gel and HPLC to yield salonitenolide (4 mg), 11 β ,13-dihydrosalonitenolide

the signals at δ 77.2, 76.1 and 76.0 were assigned to C-3, C-6 and C-8 by their correlation with the doublet of H-3 (δ 4.17), the triplet of H-6 (δ 4.73) and the multiplet of H-8 (δ 5.16), respectively. In the same way, the signals at δ 47.1, 57.6 and 46.6 were assigned to C-1, C-5 and C-7 by their correlation with the double triplet at δ 3.62 for H-1, the triplet at δ 2.31 for H-5 and the triple triplet at δ 3.12 for H-7. Similarly, the signals at δ 38.1 and 34.7 were assigned at C-2 and C-9 as they are correlated with the signals at

(8 mg), salonitenolide-8-*O*-(4'-acetoxy-5'-hydroxy)-angelate (3 mg), cnicin 4'-*O*-acetate (16 mg) and cnicin (30 mg). In the same way, the residue from the *C. conifera* fr. eluted with Et₂O-MeOH (19:1) yielded loliolide (5 mg), 1 β ,6 α -dihydroxy-4(15)-eudesmene (3 mg), chlorojanerin (1) (24 mg), chlorohyssopifolin A (2) and its C-17 epimer (3) (12 mg).

Chlorojanerin (1). Oil, IR ν_{max} cm⁻¹: 3480, 1750, 1720, 1635; CI-MS (CH₄) *m/z* (rel. int): 441 (4) and 439 (12) isotopic peaks for [M + C₃H₅]⁺, 429 (5) and 427 (13) [M + C₂H₅]⁺, 401 (18) and 399 (49) [M + 1]⁺, 299 (38) and 297 (100) [M + 1 - C₄H₆O₃]⁺, 281 (29) and 279 (83) [M + 1 - C₄H₆O₃ - H₂O]⁺, 261 (19), 243 (11) [M + 1 - C₄H₆O₃ - H₂O - HCl]⁺ and 201 (26).

Chlorohyssopifolin A (2) and 17-epichlorohyssopifolin A (3). Oil, IR ν_{max} cm⁻¹: 3460, 1745, 1720, 1650; CI-MS (CH₄) *m/z* (rel. int): 479 (4), 477 (11) and 475 (13) isotopic peaks for [M + C₃H₅]⁺, 467 (4), 465 (15) and 463 (20) [M + C₂H₅]⁺, 439 (16), 437 (50) and 435 (71) [M + 1]⁺, 301 (4), 299 (40) and 297 (96) [M + 1 - C₄H₇O₃Cl]⁺, 283 (3), 281 (31) and 279 (100) [M + 1 - C₄H₇O₃Cl - H₂O]⁺, 261 (50), 243 (27) and 201 (43).

Acknowledgements—Financial support from Dirección General de Investigación Científica y Técnica, Spanish Ministry of Education and Science (DGICYT, project PB91-0323) is gratefully acknowledged. The authors thank Dr M. B. Crespo (Departament de Botànica, Universitat de València, Spain) for identification of plant material.

REFERENCES

1. Fernández, I., Pedro, J. R. and Vidal, R. (1993) *Phytochemistry* **34**, 733.
2. Cardona, L., Bardón, A., García, B. and Pedro, J. R. (1993) *Phytochemistry* **33**, 1457.
3. Cardona, L., García, B., Pedro, J. R. and Pérez, J. (1992) *Phytochemistry* **31**, 3989.
4. Geppert, B., Drozdz, B., Kielczewski, M. and Holub, M. (1983) *Acta Soc. Bot. Pol.* **52**, 23.
5. González, A. G., Bermejo, J. and Massanet, G. M. (1977) *Rev. Latinoam. Quim.* **8**, 176.
6. Suchý, M., Samek, Z., Herout, V. and Šorm, F. (1967) *Collect. Czech. Chem. Commun.* **32**, 2016.
7. Barrero, A. F., Sánchez, J. F., Rodriguez, I. and Soria, C. (1988) *An. Quim. Ser. C* **84**, 344.
8. Marco, J. A., Sanz, J. F., Sancenón, F., Susana, A., Rustaiyan, A. and Saberi, M. (1992) *Phytochemistry* **31**, 3527.
9. Huneck, S., Jakupovic, J. and Schuster, A. (1986) *Planta Med.* **5**, 398.
10. Bruno, M. and Herz, W. (1988) *Phytochemistry* **27**, 1873.
11. González, A. G., Barrera, J. B., Yanes, A. C., Diaz, J. G. and Rodriguez, E. M. (1989) *Phytochemistry* **28**, 2520.
12. González, A. G., Bermejo, J., Cabrera, I., Galindo, A. and Massanet, G. M. (1977) *An. Quim.* **73**, 86.
13. Sarg, T., El-Dahmy, S., El-Domiaty, M. and Ateya A. (1988) *Acta Pharm. Hungar.* **58**, 129.
14. López de Lerma, J., Fayos, J., García-Blanco, S. and Martínez-Ripoll M. (1978) *Acta Cryst.* **B34**, 2669.
15. González, A. G., Bretón, J. L., Cabrera, I., Galindo, A. and Massanet G. M. (1980) *An. Quim.* **76**, 152.
16. Merill G. B. and Stevens, K. L. (1985) *Phytochemistry* **24**, 2013.
17. Cassady, J. M., Abramson, D., Cowall, P., Chang C., McLaughlin, J. L. and Aynehchi, Y. (1979) *J. Nat. Prod.* **42**, 427.