

CLERODANE DITERPENOID FROM *TINOSPORA CORDIFOLIA*

RAKESH MAURYA, VERSHA WAZIR, ANJULIKA TYAGI and RANDHIR S. KAPIL*

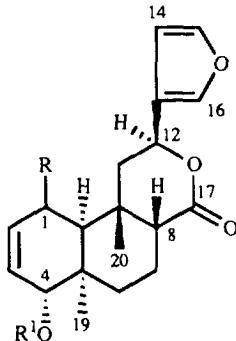
Regional Research Laboratory, Jammu 180 001, India

(Received in revised form 2 August 1994)

Key Word Index—*Tinospora cordifolia*; Menispermaceae; stem; tinosponone, tinocordioside.

Abstract—Tinosponone and tinocordioside have been isolated from the stem of *Tinospora cordifolia*. The structures were established by spectroscopic studies and chemical correlation.

INTRODUCTION


Tinospora cordifolia Miers. is distributed throughout the plains of India. It has been used for several centuries in Ayurvedic medicine for the treatment of liver and intestinal disorders [1]. This species [2-7] is rich in clerodane derived diterpenes. Recently we reported on the isolation and biological evaluation of several new furano diterpene glucosides [8, 9] and phenyl propene glycosides [10] from *T. cordifolia*. In the present communication, the structure elucidation of two new clerodane diterpenoids tinosponone (1) and tinocordioside (4) is described.

RESULTS AND DISCUSSION

The clerodane diterpene tinosponone (1) and the clerodane diterpene glucoside tinocordioside (4) were isolated from the polar fraction of *T. cordifolia* stem.

The molecular formulae of compounds 1 and 2 were determined to be $C_{19}H_{22}O_5$ and $C_{25}H_{34}O_9$, respectively, by mass measurements [FAB-MS: m/z 353 [$M + Na$]⁺ and 369 [$M + K$]⁺, and 501 [$M + Na$]⁺ and 517 [$M + K$]⁺, respectively] and from the ^{13}C NMR spectra. The mass spectra of both compounds exhibited fragment peaks at m/z 81, 94 and 121 owing to the furan moiety. The fragment at m/z 121 suggests that these compounds are furanoid diterpenes possessing an oxygen function at C-12 and a methyl group at C-9 [5, 11]. The fragments at m/z 179 in 4 and 331 in 5 indicate that each compound contains a hexose moiety.

The IR spectra of 1 indicate the presence of hydroxyl (3430 cm^{-1}), δ lactone (1710 cm^{-1}), α,β -unsaturated ketone (1678 cm^{-1}) and furan (874 cm^{-1}) functions. The UV absorption at 241 nm supported the presence of an α,β -unsaturated ketone group. Furthermore, the presence of an α,β -unsaturated ketone in ring A was confirmed by a doublet ascribed to H-2 at δ 5.97 ($J = 10.8\text{ Hz}$) and a doublet ascribed to H-3 at δ 6.65 ($J = 10.85, 5\text{ Hz}$) in the 1H NMR spectrum and resonances at δ 200.0, 129.0

	R	R ¹
1	O	H
2	O	β -D-glucopyranosyl
3	O	tetra-O-acetyl- β -D-glucopyranosyl
4	H ₂	β -D-glucopyranosyl
5	H ₂	tetra-O-acetyl- β -D-glucopyranosyl

and 143.4 ascribed to C-1, C-2 and C-3, respectively, in the ^{13}C NMR spectrum. The β -proton showed an additional coupling to a proton resonating at δ 4.35 assigned to H-4. The presence of a carbinolic carbon was also evident from ^{13}C NMR signal at δ 70.6. The characteristic 1H and ^{13}C NMR signals revealed the existence of a β -substituted furan ring (δ 6.38 s, 7.36 s and 7.42 s; δ 108.4, 143.8, 139.7, 125.1). The one proton doublet at δ 5.57 ($J = 12, 4\text{ Hz}$) was assigned to the C-12 proton and two one-proton doublet at δ 2.35 ($J = 15, 4\text{ Hz}$) and 1.71 ($J = 15, 12\text{ Hz}$) and 1.71 ($J = 15, 12\text{ Hz}$) were assigned to the C-11eq and C-11ax protons, respectively. The two methyl groups at C-9 and C-5 were observed as three proton singlets at δ 1.30 and 0.78, respectively. The signals at δ 2.30 and 2.25 were assigned to the protons at C-8 and C-10; the C-6 and C-7 methylene protons resonating at δ 2.25 (m), 1.08 ($dt, J = 14, 4\text{ Hz}$) and 2.19 (m), 1.65 ($dd, J = 14.2, 14, 8.2, 1.5\text{ Hz}$), respectively. The ^{13}C NMR chemical shifts were also consistent with the

*Author to whom correspondence should be addressed.

structure **1**. These patterns are very similar to those of tinosporaside (**2**) previously reported by Waterman *et al.* [12] from the same plant. Its structure, however, was determined with the help of UV, IR and MS spectral data of **2** and the NMR data for its tetraacetate derivative (**3**). The ¹H and ¹³C NMR spectral data of **2** have not yet been published.

Additional support for structure **1** for tinosponone was provided by its transformation to tinosporaside tetraacetate (**3**). Condensation of **1** with 2,3,4,6-tetra-O-acetyl- α -D-glucopyranosyl bromide in the presence of mercuric cyanide [13], gave the expected tinosporaside tetraacetate (**3**). The spectral properties of the synthetic product were identical with that of natural compound [12]. Thus tinosponone (**1**) is an aglycone of **2** and is presumed to have the same absolute stereochemistry.

The presence of four hydroxyls in **4** did not allow the resolution of all the protons in the ¹H NMR spectrum. Therefore, **4** was acetylated to yield the tetraacetate derivative **5** which had comparable ¹H and ¹³C NMR spectra to those of tinosporaside tetraacetate (**3**) [12]. The most striking differences in the spectra were the lack of a keto function at C-1 and the appearance of methylene protons as multiplets at δ 1.59 and 2.38 (δ_c 26.1).

The two olefinic protons of ring A resonated as multiplets at δ 6.48 and 6.40, and δ_c 132.4 and 130.7 and were assigned to C-2 and C-3, respectively. The proton at C-10 appeared as multiplet at δ 1.3. The signals of the other protons differed slightly from those of **3**. Based on all these data, we deduced that it had the new furano diterpene glucoside structure depicted in the formula (**4**) and gave it the trivial name tinocordioside.

EXPERIMENTAL

Plant material (5 kg) was extracted with 70% aq. EtOH at room temp. The EtOH was evapd and the remaining extract washed with petrol and then extracted with *n*-BuOH. The *n*-BuOH extract was freed from solvent and subjected to repeated flash CC over silica gel (230–400 mesh. Merck) to yield tinosponone (**1**, 0.120 g) and tinocordioside (**4**, 0.064 g).

Tinosponone (1). Mp 172°; $[\alpha]_D + 46.3^\circ$ (CHCl_3 , *c* 0.3); FAB-MS *m/z* (rel. int.): 369 [$\text{M} + \text{K}$]⁺ (12), 353 [$\text{M} + \text{Na}$]⁺ (15), 313 (45), 219 (80), 121 (25), 95 (8), 94 (10), 81 (40); IR ν_{max} cm^{-1} : 3430, 1710, 1678, 1450, 1210, 874; UV λ_{max} nm: 241; ¹H NMR (400 MHz, CDCl_3): δ 7.42 (s, H-16), 7.36 (s, H-15), 6.65 (*dd*, *J* = 10.8, 5 Hz, H-3), 6.38 (s, H-14), 5.97 (d, *J* = 10.8 Hz, H-2), 5.57 (*dd*, *J* = 12, 4 Hz, H-12), 4.35 (d, *J* = 5 Hz, H-4), 2.35 (*dd*, *J* = 15, 4 Hz, H-11eq), 2.30 (*br s*, H-8), 2.25 (m, H-6eq), 2.24 (*br s*, H-10), 2.19 (m, H-7eq), 1.71 (*dd*, *J* = 15, 12 Hz, H-11ax), 1.65 (*dd*, *J* = 14.2, 14, 8.2, 1.5 Hz, H-7ax), 1.30 (s, H-19), 1.08 (dt, *J* = 14, 4 Hz, H-6ax), 0.78 (s, H-20); ¹³C NMR: δ 202.5 (C-1), 171.7 (C-17), 143.8 (C-15), 143.4 (C-3), 139.7 (C-16), 129.0 (C-2), 125.1 (C-13), 108.4 (C-14), 70.6 (C-4), 64.5 (C-12), 50.6 (C-10), 49.2 (C-8), 43.6 (C-5), 40.8 (C-11), 36.1 (C-9), 31.9 (C-19), 29.7 (C-6), 25.6 (C-20), 19.1 (C-7).

Tinosporaside (2). ¹H NMR (400 MHz, DMSO-d_6): δ 7.72 (s, H-16), 7.68 (s, H-15), 6.94 (*dd*, *J* = 10.8, 5.2 Hz,

H-3), 6.65 (s, H-14), 5.91 (d, *J* = 10.8 Hz, H-2), 5.75 (*dd*, *J* = 12.2, 3.2 Hz, H-12), 5.25 (d, *J* = 6 Hz, OH), 5.02 (d, *J* = 6 Hz, OH), 4.97 (d, *J* = 6 Hz, OH), 4.58 (t, *J* = 6 Hz, H-2'), 4.38 (d, *J* = 5.2 Hz, H-4), 4.33 (d, *J* = 7.8 Hz, H-1'), 3.65 (m, H-4'), 3.45 (*br s*, OH), 3.12 (m, H-6'), 3.02 (m, H-3'), 2.96 (m, H-8, H-5'), 2.45 (s, H-10), 2.38 (*dd*, *J* = 15.0, 3.2 Hz, H-11eq), 2.11 (*br d*, *J* = 14 Hz, H-7eq), 1.99 (*br d*, *J* = 14 Hz, H-6eq), 1.85 (*dd*, *J* = 15.0, 12.2 Hz, H-11ax), 1.50 (*br t*, *J* = 14.0 Hz, H-7ax), 1.22 (s, Me), 0.88 (*br t*, *J* = 15 Hz, H-6ax), 0.70 (s, Me); ¹³C NMR: δ 202.7 (C-1), 170.0 (C-17), 145.4 (C-15), 143.9 (C-3), 140.3 (C-16), 127.2 (C-13), 125.4 (C-2), 109.0 (C-14), 104.6 (C-1'), 77.0 (C-3'), 76.5 (C-5'), 73.5 (C-2'), 72.4 (C-12), 70.0 (C-4), 69.8 (C-4'), 61.2 (C-6'), 47.9 (C-8), 47.3 (C-10), 42.7 (C-5), 40.1 (C-11), 35.4 (C-9), 31.1 (Me), 28.2 (C-6), 24.3 (Me), 18.8 (C-7).

Tinosporaside tetraacetate (3). Semi-synthetic, ¹H NMR (300 MHz, CDCl_3): δ 7.57 (s, C-16), 7.48 (s, H-15), 6.75 (*dd*, *J* = 10.2, 5 Hz, H-3), 6.46 (s, H-14), 6.04 (d, *J* = 10.2 Hz, H-2), 5.52 (*dd*, *J* = 12.2, 3.6 Hz, H-12), 5.21 (t, *J* = 9.4 Hz, H-3'), 5.08 (t, *J* = 9.7 Hz, H-4'), 4.99 (*dd*, *J* = 9.4, 7.8 Hz, H-2'), 4.67 (d, *J* = 7.7 Hz, H-1'), 4.25 (*dd*, *J* = 12.4, 4.8 Hz, H-6'), 4.22 (d, *J* = 5.2 Hz, H-4), 4.18 (*dd*, *J* = 12.4, 2.8 Hz, H-6'), 3.67 (m, H-5'), 2.35 (*dd*, *J* = 15.0, 3.6 Hz, H-11eq), 2.30 (m, H-8), 2.25 (m, H-6eq), 2.22 (*br s*, H-10), 2.19 (m, H-7eq), 2.07, 2.04, 2.03, 2.02 (s, 4 \times OCOMe), 1.88 (*dd*, *J* = 15.0, 12.2 Hz, H-11ax), 1.23 (s, Me), 1.08 (dt, *J* = 14, 4 Hz, H-6ax), 0.86 (s, Me).

Tinocordioside (4). Hygroscopic, $[\alpha]_D + 8.0^\circ$ (MeOH; *c* 0.4); FAB-MS *m/z* (rel. int.): 517 [$\text{M} + \text{K}$]⁺ (90), 501 [$\text{M} + \text{Na}$]⁺ (90), 478 [M]⁺ (50), 179 (30), 95 (20), 94 (22), 81 (30); IR ν_{max} cm^{-1} : 3560, 3140, 1705, 1675, 1510, 880; UV λ_{max} nm: 212.

Tinocordioside tetraacetate (5). Semisolid; $[\alpha]_D + 20.0^\circ$ (CHCl_3 ; *c* 0.1); FAB-MS *m/z* (rel. int.): 685 [$\text{M} + \text{K}$]⁺ (20), 669 [$\text{M} + \text{Na}$]⁺ (80), 646 [M]⁺ (20), 331 (100), 121 (60), 95 (60), 94 (30), 81 (20); IR ν_{max} cm^{-1} : 3140, 1725–1705, 1670, 1240, 880; UV λ_{max} nm: 218; ¹H NMR (400 MHz CDCl_3): δ 7.49 (s, H-16), 7.44 (s, H-15), 6.60 (m, H-3), 6.48 (m, H-2), 6.44 (s, H-14), 5.42 (*dd*, *J* = 12.2, 3.6 Hz, H-12), 5.05–5.31 (m, H-2', H-3', H-4'), 4.95 (d, *J* = 7.7 Hz, H-1'), 4.30 (*dd*, *J* = 12.4, 4.8 Hz, H-6'a), 4.22 (d, *J* = 5.2 Hz, H-4), 4.16 (*dd*, *J* = 12.4, 2.8 Hz, H-6'b), 3.75 (m, H-5'), 2.60 (m, H-8), 2.38 (m, H-1a), 2.28 (*dd*, *J* = 15, 3.6 Hz, H-11eq), 2.20 (m, H-5, H-7eq), 2.15, 2.10, 2.01, 2.00 (s, 4 \times OCOMe), 1.88 (*dd*, *J* = 15, 2.2 Hz, H-11ax), 1.59 (m, H-1, H-7ax), 1.30 (m, H-10), 1.15 (m, H-6ax), 1.26 (s, Me), 0.96 (s, Me); ¹³C NMR: δ 173.3 (C-17), 170.8, 170.3, 169.4, 168.7 (4 \times OCOMe), 143.9 (C-15), 139.6 (C-16), 132.4 (C-2), 130.7 (C-3), 125.0 (C-13), 108.3 (C-14), 98.0 (C-1'), 72.9 (C-5'), 72.6 (C-3'), 72.3 (C-4), 71.8 (C-2'), 70.6 (C-12), 68.5 (C-4'), 62.0 (C-6'), 47.3 (C-8), 44.3 (C-10), 41.8 (C-11), 38.4 (C-5), 35.2 (C-9), 29.6 (C-6), 28.2 (Me), 26.1 (C-1), 24.0 (Me), 20.7, 20.7, 20.6, 20.6 (4 \times OCOMe), 17.3 (C-7).

REFERENCES

1. Chadha, Y. R. (1976) in *The Wealth of India* Vol. 10, p. 251. Publication and Information Directorate, CSIR, New Delhi.

2. Atta-ur-Rahman, Ahmad, S., Rycroft, D. S., Par-kanyl, L., Choudhary, M. I. and Clardy, J. (1988) *Tetrahedron Letters* **29**, 4241.
3. Hanuman, J. B., Bhatt, R. K. and Sabata, B. K. (1986) *Phytochemistry* **25**, 1677.
4. Pachaly, P. and Adnan, A. Z. (1992) *Arch. Pharm.* **325**, 705.
5. Fukuda, N., Yonemitsu, M. and Kimura, T. (1993) *Liebigs Ann. Chem.* 491.
6. Hanuman, J. B. Bhatt, R. K. and Sabata, B. K. (1988) *Phytochemistry* **27**, 1212.
7. Atta-ur-Rahman, Ali, S. S., Ahmad, S. and Choudhary, M. I. (1992) *Phytochemistry* **31**, 3155.
8. Wazir, V., Maurya, R. and Kapil, R. S. (1994) *Phytochemistry* **38**, 447.
9. Maurya, R., Wazir, V. and Kapil, R. S. (1994) *Indian J. Chem. Soc.* (submitted).
10. Maurya, R., Wazir, V., Kapil, A. and Kapil, R. S. (1994) *Tetrahedron Letters* in press.
11. Yonemitsu, M., Fukuda, N., Kimura, T., Isobe, R. and Komori, T. (1990) in *Shitsuryo Bunseki Mass Spectrosc.* **38**, 25.
12. Khan, M. A., Gray, A. I. and Waterman, P. G. (1989) *Phytochemistry* **28**, 273.
13. Dass, S. K., Ghosh, R. and Roy, N. (1993) *J. Carbohydr. Chem.* **12**, 693.