

TRITERPENOID SAPONINS FROM THE BARK OF *NOTHOPANAX DAVIDII*

SHI SHAN YU, DE QUAN YU* and XIAO TIAN LIANG

Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050,
People's Republic of China

(Received in revised form 1 July 1994)

Key Word Index—*Nothopanax davidii*; Chinese folk medicine; Yiyeliang Wanosides IX, X and XI; Serratagenic acid; triterpenoid Saponin.

Abstract—Three new triterpenoid saponins were isolated from the alcoholic extract of the bark of *Nothopanax davidii*. Their structures have been determined on the basis of spectral and chemical data as 3-*O*- α -(4'-*O*-acetyl)-L-arabinopyranosyl-3 β -hydroxyolean-12-ene-28,29-dioic acid-28-*O*-[α -L-rhamnopyranosyl(1 \rightarrow 4)- β -D-glucopyranosyl(1 \rightarrow 6)- β -D-glucopyranosyl]ester, named yiyeliangwanoside IX; 3-*O*- α -(2'-*O*-acetyl)-L-arabinopyranosyl-3 β -hydroxy-olean-12-ene-28,29-dioic acid-28-*O*-[α -L-rhamnopyranosyl(1 \rightarrow 4)- β -D-glucopyranosyl(1 \rightarrow 6)- β -D-glucopyranosyl] ester, named yiyeliangwanoside X; and 3-*O*- β -D-xylopyranosyl-3 β -hydroxyolean-12-ene-28,29-dioic acid-28-*O*-[α -L-rhamnopyranosyl(1 \rightarrow 4)- β -D-glucopyranosyl(1 \rightarrow 6)- β -D-glucopyranosyl]ester, named yiyeliangwanoside XI.

INTRODUCTION

Nothopanax davidii (Franch) Harms, a well-known Chinese folk medicine 'Liang Wang Cha' is a tall tree which grows in south-west China. The bark is used to remedy rheumatoid arthritis, fractures and strains. In preceding papers [1-4], we reported the isolation and structural elucidation of eight new triterpenoid saponins from the alcoholic extract of the bark of *N. davidii*. As a continuation of studies on this plant, we present here the spectral and chemical evidence for three new triterpenoid saponins, designated as yiyeliangwanoside IX (1), X (2) and XI (3).

RESULTS AND DISCUSSION

Dried and pulverized bark of *N. davidii* was extracted with 70% ethanol. The purified extract obtained by means of column chromatography with highly porous polymer (see Experimental) was subjected to column chromatography to give 1-3, which responded to the Liebermann-Burchard test [5]. The IR spectra of 1-3 showed ester group absorptions (1: 1720, 1710 cm^{-1} ; 2: 1740, 1710 cm^{-1} ; 3: 1710 cm^{-1}) together with strong hydroxyl and olefinic absorptions.

Acid hydrolysis of 1-3 afforded the same aglycone 4, which was identified as 3 β -hydroxyolean-12-ene-28,29-dioic acid(serratagenic acid) [6] by comparison with an authentic sample (mp, ^1H and ^{13}C NMR spectral data).

On acid hydrolysis, both 1 and 2 gave L-arabinose, L-rhamnose and D-glucose; 3 gave D-xylose, L-rhamnose

and D-glucose, which were identified by HPTLC [7] and PC. The ^{13}C NMR spectra indicated the presence of four sugar residues in 1-3 by their anomeric carbon signals (1: δ 95.7, 102.7, 104.8 and 107.2; 2: δ 96.0, 102.9, 104.8 and 105.0; 3: δ 95.7, 102.7, 104.9 and 107.6). The signals at 95.7, 96.0 and 95.7 suggested that 1-3 have a glycosidic ester linkage [8] at either the 28 or 29-COOH, which was supported by slight shifts of the signals of one of two carboxyl groups [9] (Table 1). The simultaneous presence of a 3-*O*-glycosidic linkage was easily seen by the attendant downfield shifts of C-3 [10]. Thus 1-3 are bidesmosidic saponins.

On alkaline hydrolysis, both 1 and 2 yielded 5, and 3 yielded 6, which were, respectively, formulated as the 3-*O*- α -L-arabinopyranoside and 3-*O*- β -D-xylopyranoside of 4 based on their acid hydrolysis, ^1H , ^{13}C NMR and FAB mass spectral data.

The positive FAB mass spectra of 1 and 2 yielded the same molecular ions at m/z 1169 [$\text{M} + \text{K}$] $^+$, indicating their molecular weights of 1130; The FD mass spectrum of 3 revealed a molecular ion at m/z 1112 [$\text{M} + \text{Na} + \text{H}$] $^+$, indicating a molecular weight of 1088. On the other hand, the EI mass spectra of the peracetates of 1 and 2 displayed the same fragment ions at m/z 561 [(Glc-Rha)Ac₆] $^+$, 273 [(Rha)Ac₃, terminal rhamnose] $^+$, 259 [(Ara)Ac₃, terminal arabinose] $^+$; and the peracetate of 3 similarly displayed fragment ions at m/z 561 [(Glc-Rha)Ac₆] $^+$, 273 [(Rha)Ac₃, terminal rhamnose] $^+$, 259 [(Xyl)Ac₃, terminal xylose] $^+$. Therefore, the sequence of oligosaccharide chains of 1-3 is rhamnose-glucose-glucose-aglycone.

It was determined that one acetyl group was attached to the sugar moieties of both 1 and 2 by FAB mass

*Author to whom correspondence should be addressed.

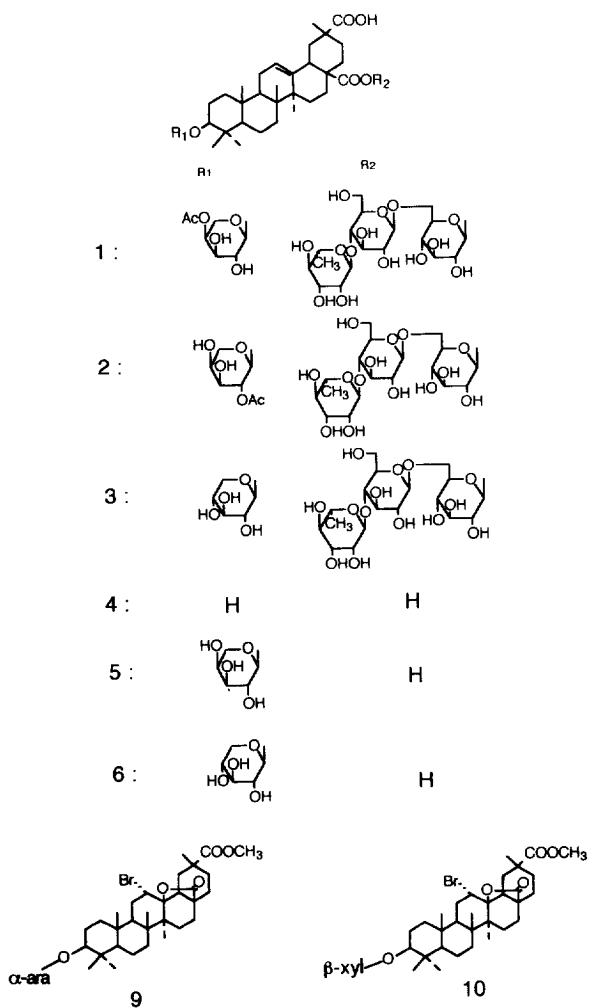


Table 1. ^{13}C NMR chemical shifts of aglycone moieties (125 MHz, in $\text{C}_5\text{D}_5\text{N}$)

C	1	2	3	4	5	6
1	38.8	38.9	38.8	38.9	38.8	38.8
2	26.6	26.9	26.7	28.0	26.7	26.6
3	89.0	89.3	88.6	78.1	88.6	88.7
4	39.5	39.8	39.6	39.4	39.6	39.5
5	55.9	56.0	55.9	55.8	55.9	55.9
6	18.5	18.8	18.5	18.8	18.5	18.5
7	33.1	33.4	33.1	33.2	33.2	33.2
8	40.0	40.2	39.9	39.7	39.8	39.8
9	48.1	48.3	48.0	48.0	48.0	48.0
10	37.1	37.3	37.1	37.4	37.1	37.1
11	23.8	23.8	23.8	23.8	23.9	23.9
12	123.0	124.0	123.1	122.2	123.3	123.2
13	143.6	144.0	143.6	144.3	144.3	144.3
14	42.3	42.7	42.3	42.5	42.6	42.6
15	28.2	28.5	28.2	28.3	28.3	28.3
16	23.6	24.2	23.5	23.8	23.9	23.9
17	47.0	47.3	47.0	46.9	46.6	46.6
18	40.8	40.2	40.8	41.1	41.1	41.1
19	40.8	41.1	40.8	41.1	41.1	41.1
20	42.2	42.5	42.2	42.2	42.6	42.6
21	29.1	29.4	29.1	29.4	29.3	29.3
22	31.7	31.9	31.7	32.4	32.4	32.4
23	28.2	28.3	28.2	28.3	28.2	28.2
24	16.9	17.2	17.0	16.6	17.0	16.9
25	15.6	15.9	15.6	15.5	15.5	15.5
26	17.5	17.8	17.5	17.4	17.4	17.4
27	26.0	26.3	26.0	26.1	26.1	26.1
28	176.2	177.0	176.3	180.0	179.9	179.8
29	180.5	181.9	180.9	181.1	180.2	180.5
30	19.9	20.2	19.9	20.0	20.0	20.0

spectra, ^1H and ^{13}C NMR. On examination of ^1H , ^{13}C NMR, ^1H - ^1H COSY and ^{13}C - ^1H COSY spectra of **1** and **2**, it was found that H-4 of arabinose shifted downfield to δ 5.55 (*m*), C-4 of arabinose shifted downfield to δ 72.2, whereas C-3 and C-5 shifted upfield for **1** (compared with these of **5**, Table 2), H-2 of arabinose shifted downfield to δ 5.70, C-2 of arabinose downfield to δ 73.9, whereas C-1 and C-3 of arabinose shifted upfield for **2** (compared with these of **5**, Table 2). Thus, the acetyl group was linked to C-4 of arabinose for **1** and C-2 of arabinose for **2**.

In the oligosaccharide chains of **1-3**, glycosylation shifts were all at C-4 and C-6 of two glucoses (shifted downfield to δ 78.7 and 69.5 for **1**; δ 78.9 and 69.0 for **2**; δ 78.7 and 69.4 for **3**; respectively) by analysis of their ^{13}C NMR, ^1H - ^1H COSY and ^{13}C - ^1H COSY spectra. The correlation between rhamnose H-1 and outer glucose C-4 was observed in COLOC experiments of **1** and **3**. The correlations between H-1 of rhamnose and H-4 of outer glucose, H-1 of outer glucose and H-6, H-6' of inner glucose were shown in the NOESY spectrum of **2**. So, it was concluded that rhamnose was linked to C-4 of outer glucose, and outer glucose was attached to C-6 of inner glucose in the oligosaccharide chains of **1-3**.

The location of a glycosyl linkage at the 28-COOH was revealed as follows. Formation of the characteristic bromolactone has been used as chemical evidence of the presence of a free carboxyl group at C-17 of olean-12-ene triterpenes [11]. On treatment with diazomethane, **1** afforded a monomethyl ester, **7**. On selective hydrolysis of the ester linkage with alkali, **7** yielded a monodesmoside **8**. Formation of a bromolactone, **9**, from **8** was observed on treatment of **8** with bromine in the presence of sodium acetate. It follows that **1** should be formulated as the 28-glycosyl ester of 3-*O*- α -arabinopyranosyl-serratagenic acid. Location of the oligosaccharide chains of **2** and **3** at 28-COOH was supported by the formation of the bromolactone as in the case of **1**. When subjected to the same procedure, **2** also afforded **9**, and **3** gave **10**.

In the ^1H NMR spectra, the anomeric proton signals for **1** at δ 4.73 (1H, *d*, *J* = 6.0 Hz), 4.93 (1H, *d*, *J* = 7.8 Hz), 5.79 (1H, *s*), 6.22 (1H, *d*, *J* = 8.0 Hz), for **2** at δ 4.70 (1H, *d*, *J* = 7.4 Hz), 5.00 (1H, *d*, *J* = 7.8 Hz), 5.80 (1H, *s*), 6.20 (1H, *d*, *J* = 8.0 Hz), for **3** at δ 4.79 (1H, *d*, *J* = 7.5 Hz), 4.92 (1H, *d*, *J* = 7.6 Hz), 5.80 (1H, *s*), 6.21 (1H, *d*, *J* = 8.1 Hz) led to the assignments of the anomeric configurations of glucose and xylose units as β , and rhamnose and arabinose units as α ; these assignments were supported by their carbon signals (Table 2).

Table 2. ^{13}C NMR chemical shifts of sugar moieties (125 MHz, in $\text{C}_5\text{D}_5\text{N}$)

	1	2	3	5	6
28-O-sugar					
Glc-1	95.7	96.0	95.7		
Glc-2	73.9	73.8	73.9		
inner					
Glc-3	78.7	77.9	78.7		
Glc-4	71.1	72.5	70.9		
Glc-5	77.9	77.0	77.1		
Glc-6	69.5	69.0	69.4		
Glc-1	104.8	104.8	104.9		
Glc-2	75.2	73.6	75.5		
outer					
Glc-3	76.5	77.6	77.9		
Glc-4	78.7	78.9	78.7		
Glc-5	77.1	76.1	77.1		
Glc-6	61.2	61.0	61.3		
Rha-1	102.7	102.9	102.7		
Rha-2	72.4	72.5	72.5		
Rha-3	72.7	72.4	72.7		
Rha-4	73.6	73.9	74.0		
Rha-5	70.3	70.1	70.3		
Rha-6	18.4	18.3	18.5		
3-O-Sugar					
Xyl-1		107.6	107.5		
Xyl-2		73.8	74.0		
Xyl-3		78.7	78.5		
Xyl-4		71.2	71.2		
Xyl-5		67.0	67.0		
Ara-1	107.2	105.0 (– 2.2)	107.2		
Ara-2	73.1	73.9 (+ 1.0)	72.9		
Ara-3	72.2 (– 2.3)	72.0 (– 2.5)	74.5		
Ara-4	72.4 (+ 2.1)	69.0	69.3		
Ara-5	65.7 (– 0.8)	66.9	66.5		
MeCO	170.7	171.0			
Me	21.0	21.8			

Based on the above results, **1–3** were established as 3-O- α -(4'-O-acetyl)-L-arabinopyranosyl-, 3-O- α -(2'-O-acetyl)-L-arabinopyranosyl- and 3-O- β -D-xylopyranosyl-3 β -hydroxyolean-12-ene-28,29-dioic acid-28-O-[α -L-rhamnopyranosyl(1 \rightarrow 4)- β -D-glucopyranosyl (1-6)- β -D-glucopyranosyl] ester, respectively.

EXPERIMENTAL

General procedures. NMR spectra were taken on a Bruker AM-500 (^1H NMR at 500 MHz and ^{13}C NMR at 125 MHz) spectrometer in $\text{C}_5\text{D}_5\text{N}$ with tetramethylsilane (TMS) as int. standard.

MS were recorded on JEOL JMS-DX 300 and JMS-DX 300 mass spectrometers.

The IR were recorded on a Perkin-Elmer 683 IR spectrometer. Mps were determined on a mmp apparatus and were uncorr. Optical rotations were measured with Perkin Elmer 241 automatic digital polarimeter. The plant was identified by Prof. Jia-Lin Wu, Sichuan School of Chinese Traditional Medicine. A voucher specimen is

deposited in Institute of Materia Medica, Chinese Academy of Medical Sciences.

Extraction and isolation of saponins. The dried bark (11 kg) of *N. davidii* was collected in the Sichuan province of China in the autumn of 1990. The bark was pulverized and extracted with 70% EtOH (25 l \times 4, 2 hr for each extraction) at 80°. The extracts were combined and concd *in vacuo* to give a brown residue (2.5 kg). The residue (0.5 kg) was subjected to CC on highly porous polymer with H_2O , 80% EtOH and EtOH, successively. The EtOH eluate (80%, 28 g) was chromatographed on silica gel with CHCl_3 -MeOH- H_2O (75:25:10, 70:30:10 and 65:35:10) to give 5 frs (I \sim V).

Fr. III (1.0 g) was chromatographed on silica gel (CHCl_3 -MeOH-EtOAc- H_2O 2:2:4:1) and reversed-phase MPLC (eluted with MeOH- H_2O 60:40) to give **1** (100 mg).

The chromatography of fr. IV on silica gel (eluted with CHCl_3 -MeOH- H_2O 7:3:1) and reversed-phase MPLC (eluted with MeOH- H_2O 57:40) gave **2** (160 mg).

Fr. V was chromatographed on silica gel (CHCl_3 -MeOH- H_2O 65:35:10) and reversed-phase MPLC (eluted with MeOH- H_2O 57:44) to afford **3** (80 mg).

Characterization of 1. A powder, mp 228–230° (dec.). $[\alpha]_D^{12} = -9.43$ (MeOH; $c 5.3 \times 10^{-2}$). Analyt. calcd for $\text{C}_{55}\text{H}_{86}\text{O}_{24} \cdot 5/2\text{H}_2\text{O}$: C 56.36, H 7.77, found C 56.18, H 7.54. IR $\nu_{\text{max}}^{\text{KBr}}$ cm^{-1} : 3400 (OH), 2925 (C-H), 1720 (C=O, ester), 1710 (C=O, ester), 1700 (O=C-OH), 1640 (C=C). ^1H NMR ($\text{C}_5\text{D}_5\text{N}$): δ 0.88, 0.94, 1.11, 1.24, 1.26, 1.45 (each 3H, s, Me), 1.68 (3H, d, $J = 6.1$ Hz, H-6 of α -rha), 2.0 (3H, s, O=CMe), 4.73 (1H, d, $J = 6.0$ Hz, H-1 of α -ara), 4.93 (1H, d, $J = 7.8$ Hz, H-1 of β -glc), 5.48 (1H, m, H-12), 5.79 (1H, s, H-1 of α -rha), 6.20 (1H, d, $J = 8.0$ Hz, H-1 of β -glc). ^{13}C NMR: Tables 1 and 2. FAB-MS m/z : 1169 [M + K]⁺, 1123 [M - HAc - 2H + K]⁺, 977 [M - HAc-Rha - 2H + K]⁺, 653 [M - HAc - Rha - Glc - Glc - 2H + K]⁺. Liebermann-Burchard reaction reddish purple.

Characterization of 2. A powder, mp 210–212° (dec.). $[\alpha]_D^{10} = -3.9$ (MeOH; $c 0.1$). Analyt. calcd for $\text{C}_{55}\text{H}_{86}\text{O}_{24} \cdot 5/2\text{H}_2\text{O}$: C 56.36, H 7.77, found C 56.03, H 7.47. IR $\nu_{\text{max}}^{\text{KBr}}$ cm^{-1} : 3400 (OH), 2925 (C-H), 1740 (C=O, ester), 1710 (C=O, ester), 1700 (O=C-OH), 1640 (C=C). ^1H NMR ($\text{C}_5\text{D}_5\text{N}$): δ 0.83, 0.88, 1.05, 1.08, 1.22, 1.44 (each 3H, s, Me), 1.69 (3H, d, $J = 6.1$ Hz, H-6 of α -rha), 2.10 (3H, s, O=C-Me), 4.70 (1H, d, $J = 7.4$ Hz, H-1 of α -ara), 5.00 (1H, d, $J = 7.8$ Hz, H-1 of β -glc), 5.44 (1H, m, H-12), 5.84 (1H, s, H-1 of α -rha), 6.25 (1H, d, $J = 8.0$ Hz, H-1 of β -glc). ^{13}C NMR: Tables 1 and 2. FAB-MS m/z : 1169 [M + K]⁺. Liebermann-Burchard reaction reddish purple.

Characterization of 3. A powder, mp 219–224° (dec.). $[\alpha]_D^{12} = -21.62$ (MeOH; $c 9.3 \times 10^{-2}$). Analyt. calcd for $\text{C}_{53}\text{H}_{84}\text{O}_{23} \cdot 7\text{H}_2\text{O}$: C 52.56, H 8.09, found C 52.56, H 7.25. IR $\nu_{\text{max}}^{\text{KBr}}$ cm^{-1} : 3400 (OH), 1710 (C=O, ester), 1700 (O=C-OH), 1630 (C=C). ^1H NMR ($\text{C}_5\text{D}_5\text{N}$): δ 0.85, 1.02, 1.11, 1.22, 1.24, 1.43 (each 3H, s, Me), 1.67 (3H, d, $J = 6.2$ Hz, H-6 of α -rha), 4.79 (1H, d, $J = 7.5$ Hz, H-1 of β -xyl), 4.92 (1H, d, $J = 7.6$ Hz, H-1 of β -glc), 5.45 (1H, m, H-12), 5.80 (1H, s, H-1 of α -rha), 6.21 (1H, d, $J = 8.1$ Hz, H-1

of β -glc). ^{13}C NMR: Tables 1 and 2. FD-MS m/z : 1112 [$\text{M} + \text{H} + \text{Na}$] $^+$. Liebermann–Burchard reaction reddish purple.

Acid hydrolysis of 1–3. A soln of sample (20 mg) and 7% HCl–EtOH (1:1) was refluxed for 4 hr. The mixt. was diluted with H_2O and extracted with Et_2O . The Et_2O layer was evapd to dryness. The residue was recrystallized in MeOH to afford **4** (6 mg), needles, mp 300.5–301 [6], $[\alpha]_D^{20} + 23.0$ (MeOH; c 0.15). IR $\nu_{\text{max}}^{\text{KBr}}$ cm^{-1} : 3450 (OH), 1701 (O=C–OH), 1643 (C=C). ^1H NMR ($\text{C}_5\text{D}_5\text{N}$): δ 0.91, 1.00, 1.03, 1.26, 1.29, 1.55 (each 3H, s, Me), 5.54 (1H, *m*, H-12). ^{13}C NMR: Table 1. EI-MS m/z : 486 [M] $^+$, 469 [$\text{M} - \text{H}_2\text{O} + \text{H}$] $^+$, 268, 233, 189. Liebermann–Burchard reaction reddish purple.

Identification of sugars. The aq. layer was neutralized with 1 N NaOH, concd, and subjected to HPTLC analysis on Kieselgel 60 F254 (Merck) [using CHCl_3 –MeOH– H_2O (30:12:4) 9 ml and HOAc 1 ml] and PC [using *n*-BuOH–HOAc– H_2O (4:1:5); phenol– H_2O (4:1); *n*-BuOH– $\text{C}_5\text{H}_5\text{N}$ –benzene– H_2O (5:3:1:3)], which showed Glc, Rha and Ara in **1** and **2**; Glc, Rha and Xyl in **3**.

Alkaline hydrolysis of 1–3. A mixt. of sample (25 mg) and 2% KOH in 70% EtOH (7 ml) was refluxed for 6 hr. After being slowly neutralized with 0.1 N HCl, the reaction mixt. was extracted with *n*-BuOH satd with H_2O . The *n*-BuOH soln was concd *in vacuo*. The residue showing a spot on TLC (CHCl_3 –MeOH– H_2O 80:10:1) was recrystallized to give **5** in **1** and **2**; **6** in **3**.

Compound **5**, powder, mp 250–252° (dec.). $[\alpha]_D^{20} - 8.9$ (MeOH; c 0.10). IR $\nu_{\text{max}}^{\text{KBr}}$ cm^{-1} : 3400 (OH), 2915 (C–H), 1700 (O=C–OH), 1645 (C=C). ^1H NMR ($\text{C}_5\text{D}_5\text{N}$): δ 0.86, 0.93, 0.99, 1.24, 1.29, 1.57 (each 3H, s, Me), 4.74 (1H, *d*, $J = 6.9$ Hz, H-1 of α -ara), 5.52 (1H, *m*, H-12). ^{13}C NMR: Tables 1 and 2. FAB-MS m/z : 657 [$\text{M} + \text{K}$] $^+$, Liebermann–Burchard reaction reddish purple.

Compound **6**, powder, mp 265–267° (dec.). $[\alpha]_D^{20} + 23.8$ (MeOH c 0.1). Analyt. calcd for $\text{C}_{35}\text{H}_{54}\text{O}_9\cdot 3/\text{H}_2\text{O}$: C 65.32, H 8.89, found C 65.69, H 8.64. IR $\nu_{\text{max}}^{\text{KBr}}$ cm^{-1} : 3440 (OH), 2950 (C–H), 1700 (O=C–OH), 1640 (C=C). ^1H NMR ($\text{C}_5\text{D}_5\text{N}$): δ 0.84, 0.97, 0.99, 1.28, 1.29, 1.57 (each 3H, s, Me), 4.80 (1H, *d*, $J = 7.5$ Hz, H-1 of β -xyl), 5.53 (1H, *m*, H-12). ^{13}C NMR: Tables 1 and 2. FAB-MS m/z : 657 [$\text{M} + \text{K}$] $^+$. Liebermann–Burchard reaction reddish purple.

Acetylation of 1–3. A soln of sample (10 mg) in a mixt. of Ac_2O (0.4 ml) and pyridine (0.4 ml) was allowed to stand at room temp., and the mixt. was worked-up as usual to give the peracetate of **1** (6 mg, **2** gave the same peracetate as that of **1**), a powder (EtOH), 157–158° (dec.), EI-MS m/z : 561 [(glc-rha) Ac_6] $^+$, 273 [(rha) Ac_3] $^+$, 259 [(ara) Ac_3] $^+$; peracetate of **3** (7 mg), a powder (EtOH), mp 153–154° (dec.); EI-MS m/z : 561 [(glc-rha) Ac_6] $^+$, 273 [(rha) Ac_3] $^+$, 259 [(xyl) Ac_3] $^+$.

Formation of the bromolactone [6]. Compound **1** (21 mg) was methylated with CH_2N_2 in MeOH, and the product **7** was dissolved in 1 N NaOH (9 ml) and heated

at 80° for 2 hr. After cooling, the reaction mixt. was neutralized with 2 N H_2SO_4 and passed through RA highly porous polymer (Seventh Chemical and Industrial Factory of Beijing) eluting with H_2O and MeOH. The MeOH soln was concd to give **8**. AcOH (6 ml) containing Br_2 (0.3 ml) was added to a soln of **8** and AcONa (30 mg) in 90% AcOH (3 ml) and the mixt. was stirred at room temp. for 15 hr under a N_2 stream. The reaction mixt. was poured into an aq. soln with NaHSO_3 and extracted with CHCl_3 . The CHCl_3 layer was evapd to dryness and the residue was purified by silica gel CC (CHCl_3 –MeOH– H_2O , 80:10:1) to give **9** (6 mg) as a powder, IR $\nu_{\text{max}}^{\text{CHCl}_3}$ cm^{-1} : 3450 (OH), 1768 (five-membered ring lactone), 1724 (COOMe), ^1H NMR ($\text{C}_5\text{D}_5\text{N}$): δ 0.82, 1.00, 1.20, 1.25, 1.28, 1.48 (each 3H, s, Me), 3.64 (3H, s, H-29), 4.26 (1H, *m*, H-12). When subjected to the same procedure, **2** also afforded **9** (6.5 mg) and **3** gave **10** (7 mg), a powder, IR $\nu_{\text{max}}^{\text{CHCl}_3}$ cm^{-1} : 3450 (OH), 1765 (five-membered ring lactone), 1720 (COOMe); ^1H NMR ($\text{C}_5\text{D}_5\text{N}$): δ 0.82, 1.00, 1.21, 1.24, 1.28, 1.47 (each 3H, s, Me), 3.61 (3H, s, H-29), 4.23 (1H, *m*, H-12).

Acknowledgement—We are grateful to Prof. Z. Y. Xiao, School of Pharmacy, West China University of Medical Sciences, for his kind help. Thanks also due to Dr W. Y. He and M. Kong, Institute of Materia Medica, Chinese Academy of Medical Sciences for their measurement of NMR and to Prof. J. L. Wu, Sichuan School of Traditional Chinese Medicine, for his identification of plant material.

REFERENCES

1. Yu, S. S. and Xiao, Z. Y. (1991) *Acta Pharm. Sin.* **26**, 261.
2. Yu, S. S. and Xiao, Z. Y. (1992) *Acta Pharm. Sin.* **27**, 47.
3. Yu, S. S., Bao, X. and Xiao, Z. Y. (1991) *Chinese Traditional and Herbal Drugs (Zhongcaoyao)* **22**, 243.
4. Yu, S. S., Yu, D. Q. and Liang, X. T. (1993) *Chinese Chem. Letters* **4**, 133.
5. Abisch, E. and Reichstein, E. (1960) *Helv. Chim. Acta* **43**, 1844.
6. Kasai, K., Oinaka, T., Yang, C. R., Zhou, J. and Tanaka, O. (1987) *Chem. Pharm. Bull.* **35**, 1486.
7. Zhao, P. P., Li, B. M. and He, L. Y. (1987) *Acta Pharm. Sin.* **22**, 70.
8. Domon, B. and Hostettmann, K. (1983) *Helv. Chim. Acta* **66**, 422.
9. Higuchi, R., Kawasaki, T., Biswas, M., Pandey, V. B. and Dasgupta, B. (1982) *Phytochemistry* **21**, 907.
10. Iwamoto, M., Okabe, H., Yamauchi, T., Tanaka, M., Rokutani, Y., Hara, S., Mihashi, K. and Higuchi, R. (1985) *Chem. Pharm. Bull.* **33**, 464.
11. Oshima, Y., Ohsawa, T. and Hikino, H. (1984) *Planta Med.* **49**, 254.