

A XANTHONE C-GLYCOSIDE FROM *IRIS NIGRICANS*

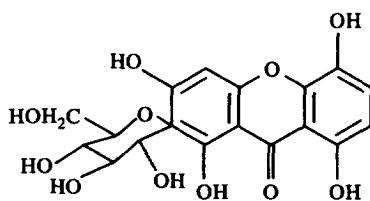
SULEIMAN AL-KHALIL,* HIDEKI TOSA† and MUNEKAZU IINUMA†

Faculty of Pharmacy, Jordan University for Women, P.O. Box 961343, Amman, Jordan; †Gifu Pharmaceutical University, Gifu 502, Japan

(Received in revised form 4 July 1994)

Key Word Index—*Iris nigricans*; Iridaceae; rhizomes; C-glycosides; 2- β -D-glucopyranosyl-1,3,5,8-tetrahydroxyxanthone.

Abstract—The isolation and identification of seven xanthones from an extract of the rhizomes of *Iris nigricans* is described. The isolated compounds are the xanthones, 1,3,6,7-tetrahydroxy-1,6,8-trihydroxy-2-methoxy-1,6-dihydroxy-3,7-dimethoxy- and 1,3,5,8-tetrahydroxy-, and the xanthone C-glycosides mangiferin, 7-O-methylmangiferin and a new compound 2- β -D-glucopyranosyl-1,3,5,8-tetrahydroxyxanthone (nigricanside). The new structure was established by detailed spectral and chemical analysis.


INTRODUCTION

Iris nigricans is a perennial herb endemic in the fallow fields of Jordan [1, 2]. Extracts of this species have been shown to contain isoflavones and led to the isolation and characterization of two new isoflavones, i.e. nigricin and nigricanin, respectively [3]. As part of our continuing studies, this paper reports the isolation and identification of seven xanthones from an extract of the rhizomes of *I. nigricans*. These xanthones include the known ones 1,3,6,7-tetrahydroxyxanthone (norathriol) 1, 1,6,8-trihydroxy-2-methoxy-xanthone (bellidifolin) 2, 1,6-dihydroxy-3,7-dimethoxyxanthone 3, mangiferin 4, 1,3,5,8-tetrahydroxy-xanthone (desmethylbellidifolin) 5, 7-O-methylmangiferin 6 and a new xanthone C-glycoside, 2- β -D-glucopyranosyl-1,3,5,8-tetrahydroxyxanthone 7, which was assigned the trivial name, nigricanside.

RESULTS AND DISCUSSION

An ethanol extract of the rhizome was partitioned between water and chloroform and *n*-butanol, respectively. The chloroform phase after drying was subjected to silica gel chromatography to give the known compounds 1–3. Compound 3, 1,6-dihydroxy-3,7-dimethoxyxanthone, was obtained as yellow needles. This is the first report of the isolation this compound from an *Iris* sp. However, this compound, 3, has been obtained by methylation of norathriol 6- β -D-glucoside (tripteroside) followed by hydrolysis with 5% H₂SO₄ [4]. The *n*-butanol phase was subjected to Sephadex gel chromatography to give the known compounds 4–6 and the new xanthone C-glycosides 7.

The UV spectrum of 7 (231, 255, 278, and 338 nm) was similar to that of 1,3,5,8-tetraoxigenated xanthone [5–8], but different from that of 1,3,5,6-tetraoxigenated ones [9, 10]. The spectrum exhibited a bathochromic shift with AlCl₃ indicating the presence of chelated hydroxyl group(s) at position 1 and/or 8 [7, 10]. Because the reaction was not reversed upon addition of HCl, the *peri* position(s) [1 and/or 8] must be OH-substituted [11]. A bathochromic shift with NaOAc was also observed, indicating a free hydroxyl group at position 3 and/or 6 [7, 10], while the maxima were unaffected by NaOAc/H₃BO₃ indicating the absence of *ortho*-hydroxyl groups [10]. In addition, a 1,3-dihydroxy system must be in the A ring of this xanthone, as the UV spectra in the presence of NaOMe and NaOAc are not superimposable [10]. The IR spectrum indicated the presence of hydroxyl (3395 cm⁻¹) and α , β -unsaturated ketone (1644 cm⁻¹) [5]. ¹H NMR analysis of 7 suggested the presence of two chelated hydroxyl protons (δ 12.85 and 13.1), which disappeared upon the addition of D₂O, three aromatic protons, amongst which one appeared as a singlet at δ 6.42 and could be assigned to the C-4 proton, since the C-2 proton appeared at a higher field than that of C-4 [12, 13]. The remaining two aromatic protons appeared as *ortho*-split

*Author to whom correspondence should be addressed.

doublets, centred at δ 7.21 and 6.86 ($J_9 = 8.89$ Hz) which were assignable to the C-6 and C-7 hydrogens of the xanthone nucleus [12, 14, 15]. A broad signal integrating for six protons at δ 3.2–4.15 and a doublet ($J = 9.1$ Hz) at δ 4.69 were assigned to the aliphatic protons and the anomeric proton of the β -linked residue sugar moiety [16]. Compound 7 gave a positive Gibbs test, indicating that an aromatic proton is located *para* to a phenolic group [10]. The site of the sugar linkage to the aglycone in 7 was considered to be at C-2 of 1,3,5,8-tetrahydroxyxanthone, since in the ^{13}C NMR spectrum a signal appeared at δ 107.8, meanwhile in the aglycone the compounding signal appeared at δ 98.2 [7, 11]. The hexose substituent at C-2 gave a pattern of ^{13}C NMR signals similar to that exhibited by the C-linked glucose in mangiferin [17, 18]. Compound 7 resisted the usual acid hydrolysis, but refluxing with HI gave 1,3,5,8-tetrahydroxyxanthone [14], which was identical to the isolated compound 5. Compound 7, $\text{C}_{19}\text{H}_{18}\text{O}_{11}$, gave a molecular ion at m/z 404 [$\text{M} - 18$] $^+$ with a fragment ion (base peak) at m/z 273 [$\text{M} - \text{C}_5\text{H}_9\text{O}_5$] $^+$, indicating that the glucose is *ortho* to a chelated hydroxyl group [19]. Further confirmation was made by direct comparison with the spectral data of 5. Thus, the structure of 7 was determined as 2- β -D-glucopyranosyl-1,3,5,8-tetrahydroxy-9H-xanthene-9-one, which was given the trivial name, nigricanside.

EXPERIMENTAL

General. Mps: uncorr. UV were obtained in MeOH , IR in KBr pellets. ^1H NMR at 200 MHz and ^{13}C NMR at 100 MHz with TMS as int. standard; chemical shifts are reported in δ units. Silica gel (Kiesel gel 60, Merck) was used for CC, (Kieselgel 60F₂₅₄ Merck) used for TLC. Sephadex LH-20 was used for gel chromatography. Na_2SO_4 was routinely used for drying solvents and all solvents were evapd under red. pres. at 40°.

Plant material. *Iris nigricans* Dinsm. was collected in the vicinity of Madaba, 40 km south of Amman, Jordan, in April 1990 and identified by Prof. D. Al-Eisawi, Plant Taxonomist, Department of Biological Sciences, Faculty of Science. A herbarium specimen is deposited at the Department of Pharmacognosy, Faculty of Pharmacy, University of Jordan, Amman-Jordan.

Extraction and fractionation. Air-dried and chopped rhizomes (6.4 kg) were extracted by percolation with EtOH (28 l). After the solvent was evapd, a syrupy residue (816 g) was obtained. This was suspended in H_2O (1.5 l) and extracted with CHCl_3 (1 l \times 3) [fr. A, 116.3 g] and with $n\text{-BuOH}$ (1 l \times 3) [fr. B, 178.1 g], respectively.

Chromatography of fr. A. Fr. A was chromatographed over silica gel (350 g) and eluted with varying proportions of petrol, CHCl_3 and MeOH . Elution with CHCl_3 – MeOH (3:2) (1.5 l) afforded a residue (24.3 mg), which was recrystallized from MeOH to give 1,3,6,7-tetrahydroxyxanthone (norathriol) 1 (15.6 mg), identical by direct comparison with spectral and lit. data (UV, IR, MS, ^1H NMR) [20, 21]. Continued elution with CHCl_3 – MeOH (2:3) yielded a solid residue (43.6 mg)

which showed two major spots on TLC. Prep. TLC (EtOAc – MeOH – H_2O , 20:3:2) gave 2 pure compounds 2 and 3, respectively. Compound 2, mp 259–260° (MeOH) was identified as 1,6,8-trihydroxy-2-methoxyxanthone (bellidifolin) by direct comparison with lit. data (UV, ^1H NMR, MS, mp) [22, 23]. Compound 3, mp 266–267° (MeOH) was identified as 1,6-dihydroxy-3,7-dimethoxyxanthone by direct comparison with lit. data (UV, ^1H NMR, MS, mp) [4] and conversion to its diacetate [4].

Chromatography of fr. B. Fr. B was chromatographed over Sephadex LH-20 (350 g) using MeOH – H_2O (9:1) as eluent; 40 frs were collected (50 ml each) and combined according to TLC analysis. Frs 1–12 gave mangiferin 4 (78 mg), mp 271° (MeOH) identical by direct comparison with spectral and lit. data (UV, ^1H , ^{13}C NMR, MS, mp) [8, 21, 24]. Frs 13–18 yielded 1,3,5,8-tetrahydroxyxanthone 5 (14.1 mg), mp 292° (MeOH) identical by direct comparison with spectral and lit. data (UV, ^1H , ^{13}C NMR, MS, mp) [7, 8, 25]. Frs 19–25 gave 7-O-methylmangiferin 6 (23.6 mg), mp 239–240°, $[\alpha]_D^{23} + 31.3^\circ$ (pyridine; c 0.5) identical by direct comparison with lit. data ($[\alpha]_D$, UV, ^1H NMR, MS, mp) [12]. Frs 26–40 yielded a mixt. (134.4 mg), which showed 1 major spot on TLC and was subjected to silica gel CC (30 g). Elution with CHCl_3 – MeOH (13:7) [2.5 l] yielded a solid residue (98.6 mg) which recrystallized from MeOH to furnish 7 (72.3 mg).

2- β -D-Glucopyranosyl-1,3,5,8-tetrahydroxy-9H-xanthene-9-one (Nigricanside) 7. Pale yellow needles, mp 264–266° $[\alpha]_D^{23} + 24.6^\circ$ (pyridine; c 0.4). Gibbs test (+). Analyt. calcd. $\text{C}_{19}\text{H}_{18}\text{O}_{11}$: C, 54.03, H, 4.30. Found: C, 53.78, H, 4.23. EIMS m/z (rel. int.): 404 (15), 386 (9), 368 (35), 350 (12), 274 (56), 273 (100). UV λ_{max} nm: 231, 255, 278, 338; + AlCl_3 226 (sh), 263, 289, 326, 376; + AlCl_3 – HCl 226 (sh), 257, 291, 328, 376; + NaOMe 235, 260, 304, 360; + NaOAc 248 (sh), 272, 361; + NaOAc – H_3BO_3 252, 276, 338. IR ν_{max} cm^{-1} : 3395 (OH), 1644 (C = O, con.), 1618, 1595, 1505, 1320, 1073, 1040, 1025, 855. ^1H NMR (DMSO- d_6): δ 3.2–4.15 (6H, br, al. H), 4.69 (1H, d, $J = 8.89$ Hz, H-1'), 6.42 (1H, s, H-4), 7.21 (1H, d, $J = 8.89$ Hz, H-6), 6.86 (1H, d, $J = 8.89$ Hz, H-7), 12.85 (1H, s, OH-8, exchangeable with D_2O), 13.1 (1H, s, OH-1, exchangeable with D_2O). ^{13}C NMR (DMSO- d_6): δ 161.6 (C-1), 107.8 (C-2), 163.6 (C-3), 93.2 (C-4), 156.1 (C-4a), 135.2 (C-5), 124.2 (C-6), 111.6 (C-7), 150.6 (C-8), 107.4 (C-8a), 179.9 (C-9), 101.2 (C-9a), 143.5 (C-10a), 72.9 (C-1'), 70.4 (C-2' or C-4'), 78.8 (C-3'), 70.1 (C-4' or C-2'), 81.4 (C-5'), 61.9 (C-6').

Octaacetate of 7. A soln of 7 (20 mg) in dry pyridine and Ac_2O was heated at 100° for 4 hr. The reaction mixt. was poured into ice– H_2O and the ppt. collected, washed with H_2O , dried and recrystallized from MeOH as needles, mp 205–207°. Analyt. calcd. for $\text{C}_{35}\text{H}_{34}\text{O}_{19}$: C, 55.41, H, 4.52. Found C, 55.18, H, 4.53. ^1H NMR (DMSO- d_6): δ 1.78 (3H, s, al. OAc), 2.01 (3H, s, al. OAc), 2.03 (3H, s, al. OAc), 2.05 (3H, s, al. OAc), 2.47 (3H, s, ar. OAc), 2.55 (9H, s, 3 \times ar. OAc), 4.81 (1H, d, $J = 9.1$ Hz, H-1'), 5.71 (1H, s, H-4), 7.53 (1H, d, $J = 8.6$ Hz, H-6), 7.06 (1H, d, $J = 8.6$ Hz, H-7).

Treatment of 7 with HI. A soln of **7** (20 mg) in phenol (0.2 mg) was refluxed with HI (*d*, 1.7, 1 ml) for 4 hr. The reaction mixt. was poured into 5% NaHSO₃ soln (20 ml), the ppt. collected, washed with H₂O and dried. The product obtained was identical by direct comparison (UV, IR, co-TLC, m.mp) with **5**. The product was further heated with Ac₂O and NaOAc for 1 hr and was pptd by adding H₂O, collected on filter paper, washed with H₂O and recrystallized from MeOH to give the tetraacetate of **5** as needles, mp 241°. ¹H NMR (CDCl₃): δ 2.2–2.34, 2.45 (s, ar, OAc), 6.91 (1H, *d*, *J* = 2.18 Hz, H-2), 7.12 (1H, *d*, *J* = 2.18 Hz, H-4), 7.23 (1H, *d*, *J* = 9.1 Hz, H-6), 7.54 (1H, *d*, *J* = 9.1 Hz, H-7).

Ferric chloride oxidation of 7. Compound **7** (15 mg) was refluxed with an aq. soln of FeCl₃ (0.5 g in 5 ml H₂O) for 6 hr. After cooling the reaction mixt. was filtered and the filtrate passed through a column of Amberlite IR-120 (H⁺ form) and IR-4B (OH⁻ form) and evapd to a syrupy residue, which was examined by PC. *R*_f 0.18 (brown, glucose); 0.21 (reddish brown, arabinose) (*n*-BuOH–HOAc–H₂O, 4:1:2). Colour reaction with 0.1 N aniline hydrogen phthalate [14].

Acknowledgements—The authors are grateful to Professor Sun Hong-Fa, Northwest Institute of Biology Academic Sinica, Xining, Qinghai, China for spectra of 1,3,5,8-tetrahydroxyxanthone, and to Dr G. Kitov, Department of Pharmacognosy, Faculty of Pharmacy, Sofia, Bulgaria for spectra of norathriol and mangiferin.

REFERENCES

1. Feinbrung-Dothan, N. (1986) in *Flora Palaestina*, p. 123. The Israel Academy of Sciences and Humanities, Jerusalem.
2. Al-Eisawi, D. (1982) *Mitt. Bot. Munchen* **16**, 79.
3. Al-Khalil, S., Al-Eisawi, D., Kato, M. and Iinuma, M. (1994) *J. Nat. Prod.* **57**, 201.
4. Chun-Nan, L., Cheng-Hsiung, C., Arisawa, M., Shimizu, M. and Morita, N. (1982) *Phytochemistry* **21**, 948.
5. Fukamiya, N., Okano, M., Kondo, K. and Tagahara, K. (1990) *J. Nat. Prod.* **53**, 1543.
6. Markham, K. M. (1964) *Tetrahedron* **20**, 991.
7. Hui-Min, Z., Yong-Long, L., Blasko, G. and Cordell, G. (1989) *Phytochemistry* **28**, 3569.
8. Hong-Fa, S., Bai-Lin, H., Jing-Ye, D. and Shu-Fen, F. (1991) *Acta Bot. Sin.* **33**, 31.
9. Chaudhuri, R. and Ghosal, S. (1971) *Phytochemistry* **10**, 2425.
10. Lins Msquita, A., DeBarros Correa, D., Gottlieb, O. and Magalhaes, M. (1986) *Analyt. Chim. Acta* **42**, 311.
11. Massias, M., Carbonnier, J. and Mohlo, D. (1981) *Phytochemistry* **20**, 1577.
12. Fujita, M. and Inoue, T. (1982) *Chem. Pharm. Bull.* **30**, 2342.
13. Aritomi, M. and Kawasaki, T. (1969) *Tetrahedron Letters* **12**, 941.
14. Arisawa, M., Morita, N., Kondo, Y. and Takemoto, T. (1973) *Chem. Pharm. Bull.* **21**, 2562.
15. Fujita, M. and Inoue, T. (1991) *Yakugaku Zasshi* **101**, 1118.
16. Agrawal, P. K. (1992) *Phytochemistry* **31**, 3307.
17. Markham, K. and Woolhouse, A. (1983) *Phytochemistry* **22**, 2827.
18. Miura, I., Hostettmann, K. and Nakanishi, K. (1978) *Nov. J. De Chimie* **2**, 653.
19. Prox, A. (1970) *Liebigs Ann. Chem.* **732**, 199.
20. Kitanov, G., Assenov, I. and Van, T. (1988) *Pharmazie* **43**, 879.
21. Kitanov, G., Assenov, I. and Van, T. (1988) *Farmacia* **30**, 10.
22. Kaldas, M., Hostettmann, K. and Jacot-Guillarmod, A. (1974) *Helv. Chim. Acta* **57**, 279.
23. Ishimaru, K., Sudo, H., Satake, M., Matsunaga, Y., Hasegawa, Y., Takemoto, S. and Shimomura, K. (1990) *Phytochemistry* **29**, 1563.
24. Chen, M. T. and Chen, C. M. (1985) *Heterocycles* **23**, 2543.
25. Vermes, B., Seligmann, O. and Wagner, H. (1985) *Helv. Chim. Acta* **68**, 2359.