

FLAVONOIDS OF DRAGON'S BLOOD FROM *DRACAENA CINNABARI*

MOHAMED MASAOUD, HELMUT RIPPERGER, ANDREA PORZEL and GÜNTHER ADAM*

Institute of Plant Biochemistry, Weinberg 3, D-06120 Halle/S., Germany

(Received in revised form 18 July 1994)

Key Word Index—*Dracaena cinnabari*; Agavaceae; homoisoflavans; flavans; dihydrochalcones; chalcone; flavone; flavan-4-one.

Abstract—In addition to 7-hydroxy-3-(4-hydroxybenzyl)-8-methoxychroman, 3-(4-hydroxybenzyl)-7,8-methylenedioxychroman, 7-hydroxy-3-(4-hydroxybenzyl)chroman, (\pm)-7,4'-dihydroxy-3'-methoxyflavan, (2S)-7-hydroxyflavan, 4,4'-dihydroxy-2-methoxydihydrochalcone, 4,4'-dihydroxy-2'-methoxychalcone, 7,4'-dihydroxyflavone and (2S)-7-hydroxyflavan-4-one, three new flavonoids have been isolated from the resin, called 'dragon's blood', of *Dracaena cinnabari*, the structures of which have been elucidated as 7-hydroxy-3-(3-hydroxy-4-methoxybenzyl)chroman, (2S)-7,3'-dihydroxy-4'-methoxyflavan and 4-hydroxy-2-methoxydihydrochalcone.

INTRODUCTION

Dracaena cinnabari Balf. fil. is known as the dragon's blood tree, and is endemic to the Socotra Island of Yemen [1]. Phytochemical studies of the genus *Dracaena* have previously led to the isolation of several flavonoids from *D. draco* [2] and *D. loureiri* [3-5]. The resin of *D. cinnabari*, which is called dragon's blood, has been known for a long time in folk medicine as an astringent in diarrhoea and dysentery, as well as an antiseptic, haemostatic and antiulcer remedy [6]. Eight flavonoids have been recently reported [7] from dragon's blood, three of which, homoisoflavans, have shown antioxidative activity [8].

The present study showed that dragon's blood contained 7-hydroxy-3-(4-hydroxybenzyl)-8-methoxychroman (2), 3-(4-hydroxybenzyl)-7,8-methylenedioxychroman (3), 7-hydroxy-3-(4-hydroxybenzyl)chroman (4), (2S)-7-hydroxyflavan (7), 4,4'-dihydroxy-2-methoxydihydrochalcone (9), and (2S)-7-hydroxyflavan-4-one (12), already found in the same resin by Suchý *et al.* [7]. Furthermore, (\pm)-7,4'-dihydroxy-3'-methoxyflavan (5) [9, 10], 4,4'-dihydroxy-2'-methoxychalcone (10) [5], and 7,4'-dihydroxyflavone (11) [5, 11] and three new flavonoids, 7-hydroxy-3-(3-hydroxy-4-methoxybenzyl)chroman (1), (2S)-7,3'-dihydroxy-4'-methoxyflavan (6) and 4-hydroxy-2-methoxydihydrochalcone (8) were obtained, the structures of which have been elucidated as outlined below.

RESULTS AND DISCUSSION

The elemental composition of 1 was shown to be C₁₇H₁₈O₄ by high resolution-mass spectrometry. The EI-

mass spectrum displayed fragment ions at *m/z* 138 and 149, characteristic of a 3-benzylchroman derivative [12]. The fragment ion at *m/z* 138 revealed the presence of a hydroxymethoxybenzyl group and the ion at *m/z* 149, the presence of a hydroxy group on ring A.

The ¹H NMR signals (Table 1, numbered according to ref. [3]) of the hydroxymethoxybenzyl residue at δ 6.65 and 6.78 showed an *ortho*-relationship, and the signals at δ 6.65 and 6.77 the *meta*-position of two protons. In the NOE difference spectrum, irradiation at δ 3.88 (methoxy) gave positive enhancement for the doublet at δ 6.78 indicating proximity to the *ortho*-coupled proton. Furthermore, the chemical shifts of two oxygenated aromatic carbon atoms at δ 145.0 and 145.5 (Table 2) are in agreement with the assumption that these atoms are bound to each other [13]. These observations suggested the substitution pattern of the benzyl group. Coupling constants and ¹H-¹H COSY 2D measurements indicated that the two aromatic protons at δ 6.34 and 6.84 are *ortho*-related, one of which (δ 6.34) is also *meta*-oriented to a proton, at δ 6.30. The ¹³C signal at δ 130.5 (C-5) indicated the C-7 position for the hydroxy group of ring A. In addition, the high-field chemical shift of C-8 (δ 103.0) is caused by two *ortho*-related oxygenated carbons. ¹H-¹H COSY 2D spectra were in accordance with an aliphatic O-CH₂-CH(CH₂)₂ spin system, and the two H-9 signals were assigned by an NOE between these protons and H-6'. The homoisoflavan 1 was previously synthesized as a racemate [14].

The homoisoflavans 1-4 displayed positive circular dichroism at about 280 nm (1 $\Delta\epsilon_{282} + 0.41$, 2 $\Delta\epsilon_{276} + 0.20$, 3 $\Delta\epsilon_{286} + 0.50$, 4 $\Delta\epsilon_{279} + 0.74$, all measurements in MeOH) indicating the same absolute configurations. It was attempted to determine the absolute configurations by X-ray analysis, but this was not successful.

*Author to whom correspondence should be addressed.

Table 1. ^1H NMR spectral data of compounds **1–3** (CDCl_3 , 500 MHz)

H	1	2	3	
2eq	4.15	(15.5; 3.1; 1.5)	4.24	(10.5; 3.1; 1.5)
2ax	3.78	(10.6; 8.4)	3.83	(10.5; 8.4)
3	2.25	<i>m</i>	2.25	<i>m</i>
4eq	2.71	(15.9; 5.2)	2.73	(15.3; 5.2)
4ax	2.41	(15.9; 8.9)	2.45	(15.9; 8.5)
5	6.84	(8.0)	6.62	(8.4)
6	6.34	(8.0; 2.5)	6.47	(8.4)
8	6.30	(2.5)	—	—
9a	2.60	(13.7; 7.3)	2.62	(13.9; 7.5)
9b	2.51	(13.7; 7.7)	2.56	(13.9; 7.5)
2'	6.77	(2.0)	7.05	(6.4; 2.1)
3'	—	—	6.77	(6.4; 2.1)
5'	6.78	(8.2)	6.77	(6.4; 2.1)
6'	6.65	(8.2; 2.0)	7.05	(6.4; 2.1)
OMe	3.88	<i>s</i>	3.88	<i>s</i>
O-CH ₂ -O	—	—	—	5.94 (1.2)

Coupling constants (*J* in Hz) in parentheses.Table 2. ^{13}C NMR spectral data of compounds **1–3***

C	1	2	3
2	69.9	70.9	70.2
3	34.1	35.7	34.2
4	30.3	31.4	30.5
4a	113.8	115.1	116.8
5	130.5	125.4	121.8
6	107.8	109.2	101.3
7	155.3	149.6 ^a	146.8 ^a
8	103.0	136.7	134.1
8a	154.7	149.1 ^a	139.0 ^a
9	37.3	37.9	36.9
1'	132.6	131.6	131.3
2'	115.1	130.9	130.1
3'	145.0	116.1	115.3
4'	145.5	156.8	153.9
5'	116.6	116.1	115.3
6'	120.4	130.9	130.1
OMe	56.0	60.9	—
O-CH ₂ -O	—	—	101.3

***1** and **3** in CDCl_3 , **2** in CD_3OD ; 125 MHz.

^aMay be exchanged.

Compound **5** is also known as a racemate [9] and as the (2*S*)-compound [10]. As the previous arguments for structural determination are not convincing, we describe the structure elucidation of the racemate. The EI-mass spectrum of **5** displayed, in addition to the molecular ion peak at *m/z* 272, fragment ions at *m/z* 123, 149 and 150, characteristic of a flavan with a hydroxy group in ring A and hydroxy and methoxy groups in ring B [15] (see Experimental).

In the ^1H NMR spectrum of the acetyl derivative **5a** (Table 3), the signals of the acetoxy methoxybenzyl re-

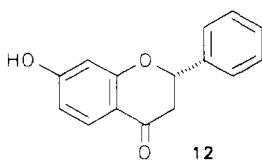
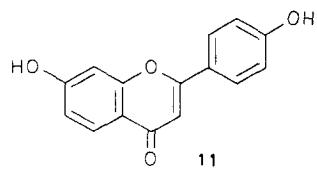
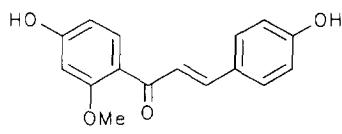
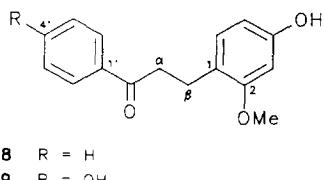
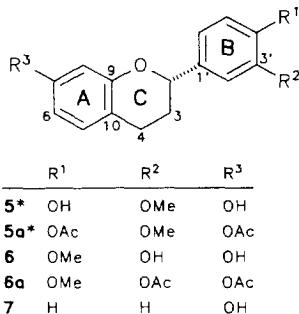
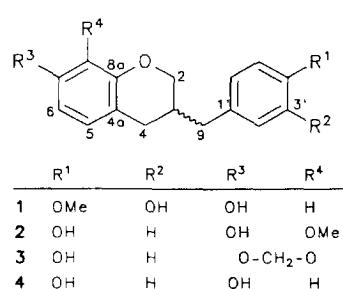
Table 3. ^1H NMR spectral data of compounds **5**, **5a**, **6** and **6a** (CDCl_3 , 500 MHz)

H	5	5a*	6	6a*
2	4.94	5.02	4.94	4.99
3	2.0–2.2	2.0–2.2	2.0–2.2	2.0–2.2
4	2.7–3.0	2.7–3.0	2.6–3.0	2.7–3.0
5	6.92	7.08	6.92	7.06
6	6.39	6.62	6.39	6.60
8	6.38	6.65	6.38	6.62
2'	6.94	7.05	6.99	7.11
5'	6.90	7.04	6.86	6.97
6'	6.90	6.96	6.90	7.24
OMe	3.90	3.85	3.89	3.84
OAc	2.28; 2.32	—	2.28; 2.32	—

* $J_{2,3} = 10.5$; 2.4 Hz, $J_{5,6} = 8.2$ Hz, $J_{6,8} = 2.4$ Hz, $J_{2',6'} = 2.1$ Hz, $J_{5',6'} = 8.5$ Hz.

sidue at δ 6.96 and 7.04 showed *ortho*-coupling, the signals at δ 6.96 and 7.05 *meta*-coupling. The chemical shifts of two oxygenated aromatic carbon atoms in **5** at δ 147.2 and 148.9 (Table 4, numbered according to ref. [16]) indicated that these atoms are connected [13]. In the NOE difference spectrum of **5a** irradiation at δ 3.85 (methoxy) gave positive enhancement for the signal at δ 7.05 indicating proximity to the proton, which only showed *meta*-coupling. These data suggested the 4'-hydroxy-3'-methoxy substitution. The C-7 position of another hydroxy group was determined analogously as with **1**, except that the ^1H NMR data of the acetyl derivative **5a** were again analysed (Tables 3 and 4).

The elemental composition of **6** was shown to be $\text{C}_{16}\text{H}_{16}\text{O}_4$ by high resolution-mass spectrometry. The mass spectrometric fragmentations of **5** and **6** were very similar, suggesting isomeric structures (see Experimental). The ^1H - and ^{13}C -signals for rings A and C of **5** and **6**







Table 4. ^{13}C NMR spectral data of compounds **5** and **6** (CD₃OD, 125 MHz)

C	5	6
2	79.2	78.7
3	25.5	25.3
4	31.4	31.3
5	130.4	130.9
6	109.1	109.0
7	157.1	157.0
8	104.0	104.0
9	157.5	157.5
10	114.3	114.3
1'	134.9	136.3
2'	110.9	112.5
3'	148.9	147.4
4'	147.2	148.2
5'	115.9	114.1
6'	119.9	118.5
OMe	56.4	56.4

(Tables 3 and 4) were identical, in accordance with identical partial structures. The spectral assignments were supported by HETCOR spectra. As in the case of **5**, the ^1H NMR spectrum of the acetyl derivative **6a** was better resolved than that of **6** (Table 3). The signal of the acetoxymethoxybenzyl residue at δ 7.24 indicated *ortho*-coupling to the signal at δ 6.97, and *meta*-coupling to the signal at δ 7.11. The chemical shifts of two oxygenated aromatic carbon atoms in **6** at δ 147.4 and 148.5 (Table 4) indicated their *ortho*-relationship [13]. Thus, compound **6** possesses the same substitution pattern as **5** and must differ in the position of the *O*-methyl group. Flavan **6** was previously synthesized as the racemate [17].

The elemental composition of **8** was shown to be $C_{16}H_{16}O_3$ by high resolution-mass spectrometry. The fragments at m/z 105 and 137 suggested the presence of benzoyl and hydroxymethoxybenzyl ions formed by α and β cleavage in agreement with high resolution data.

The ^1H NMR spectrum showed in addition to the five protons of the unsubstituted phenyl group, three aromatic protons, which appeared as an ABC system at

* racemate

δ 6.33 (*dd*, $J = 7.9, 2.4$ Hz), 6.41 (*d*, $J = 2.4$ Hz) and 7.01 (*d*, $J = 8.2$ Hz) (see Experimental) assigned to H-5, H-3 and H-6, respectively. The chemical shifts of the oxygenated aromatic carbon atoms of ring B at δ 155.3 and 158.5 excluded their connection [13]. Location of a methoxy group either at position C-2 or C-4 was determined by an NOE difference experiment. Irradiation at δ 3.78 (methoxy) gave positive enhancement only for the signal at δ 6.41, in agreement with a 2'-methoxy group. H₂- α and H₂- β were assigned by comparison with literature data of related compounds [4]. The structure of **8** was verified by a long-range ¹H-¹H COSY spectrum which showed a strong correlation signal between H₂- β and H-6.

¹³C NMR data for **2** and **3** are not previously reported, furthermore, the literature for **3** [7] is hardly accessible. Therefore, we report our results for these compounds (see Tables 1 and 2 as well as Experimental).

EXPERIMENTAL

Plant material. Dragon's blood from *Dracaena cinnabari* was collected in Socotra Island of Yemen in summer, 1992. A voucher specimen of the resin is deposited at the Institute of Plant Biochemistry, Halle.

TLC. On silica gel 60 F₂₅₄ using *n*-hexane-EtOAc (3:2) [R_f (1)] or CHCl₃-MeOH (19:1) [R_f (2)] for development, and vanillin-H₃PO₄ (120°) for detection.

Extraction and isolation. The powdered resin (500 g) was successively extracted with *n*-hexane, CHCl₃ and MeOH. Evapn of solvents *in vacuo* gave residues of 2.8, 55 and 200 g, respectively. The CHCl₃ extract was repeatedly subjected to silica gel chromatography (Merck 60, 0.063-0.20 mm), eluting with *n*-hexane with increasing amounts of EtOAc. The following compounds were isolated in the indicated yields: **7** (0.48%), **3** (0.17%), **8** (0.02%), **12** (0.03%), **2** (1.0%), **1 + 5** (0.3%), **6** (0.66%), **4** (0.12%), **9** (0.15%). Compounds **1** (0.12%) and **5** (0.17%) were sepd by HPLC (Lichrospher 100 RP-18, column 125 × 4 mm, flow rate 1 ml min⁻¹, mobile phase MeOH-0.2% HOAc, 9:11, detection 280 nm). **10** (0.3%) and **11** (0.2%) were isolated from the MeOH extract by silica gel chromatography (Merck 60, 0.063-0.20 mm) with *n*-hexane-EtOAc (3:2) and toluene-EtOAc-HOAc (60:30:1), respectively.

7-Hydroxy-3-(3-hydroxy-4-methoxybenzyl)chroman (1). Amorphous, $[\alpha]_D^{22} + 27.9^\circ$ (MeOH; *c* 0.20), R_f (2) 0.45. UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm (log ϵ): 211 (4.17), 223 (3.97), 282 (3.66). EI-MS (70 eV) *m/z* (rel. int.): 286.1214 [M]⁺ (C₁₇H₁₈O₄, calcd 286.1223) (13), 176 (7), 149 (51), 138 (40), 125 (13).

7-Hydroxy-3-(4-hydroxybenzyl)-8-methoxychroman (2). Amorphous, $[\alpha]_D^{22} + 49.5^\circ$ (CHCl₃; *c* 0.30) (lit. + 36.93° (CHCl₃) [2]), R_f (2) 0.45. UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm (log ϵ): 231 (3.40), 278 (3.50).

3-(4-Hydroxybenzyl)-7,8-methylenedioxychroman (3). Needles, mp 141-142° (CH₂Cl₂) (lit. 140° [7]), $[\alpha]_D^{22} + 45.8^\circ$ (MeOH; *c* 0.28) (lit. + 52.8° (MeOH) [7]), R_f (1) 0.56. UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm (log ϵ): 223 (4.17), 277 (3.40). EI-MS (70 eV) *m/z* (rel. int.): 284 [M]⁺ (100), 177 (22), 176 (44), 151 (30), 150 (22), 149 (18), 147 (17), 135 (15), 107 (51).

7-Hydroxy-3-(4-hydroxybenzyl)chroman (4). Needles, mp 153-154° (CH₂Cl₂) (lit. 123-124° [3]), $[\alpha]_D^{22} + 59.5^\circ$ (MeOH; *c* 0.26) (lit. + 62.9° (MeOH) [3]), R_f (2) 0.29.

(\pm)-**7,4'-Dihydroxy-3'-methoxyflavan (5).** Amorphous (lit. mp 157-158° [9]), $[\alpha]_D^{22} \pm 0.0^\circ$ (MeOH; *c* 0.24), R_f (2) 0.45. UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm (log ϵ): 211 (4.54), 222sh (4.49), 281 (3.94); $\lambda_{\text{max}}^{\text{MeOH} + \text{NaOMe}}$ nm (log ϵ): 220 (4.40), 245 (4.25), 291 (4.00). EI-MS (70 eV) *m/z* (rel. int.): 272 [M]⁺ (50), 163 (11), 150 (89), 149 (100), 137 (30), 135 (30), 123 (15), 107 (12).

(2S)-**7,3'-Dihydroxy-4'-methoxyflavan (6).** Needles, mp 151-152° (CHCl₃), $[\alpha]_D^{22} - 45.5^\circ$ (MeOH; *c* 0.30), R_f (2) 0.44. UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm (log ϵ): 213 (4.23), 224 sh (4.18), 282 (3.83); $\lambda_{\text{max}}^{\text{MeOH} + \text{NaOMe}}$ nm (log ϵ): 219 (4.30), 287 (3.83); $\lambda_{\text{max}}^{\text{MeOH} + \text{NaOAc}}$ nm (log ϵ): 219 (4.27), 282 (3.82). EI-MS (70 eV) *m/z* (rel. int.): 272.0979 [M]⁺ (C₁₆H₁₆O₄, calcd 272.0972) (96), 163 (14), 162 (25), 150 (100), 137 (43), 135 (46), 123 (16), 107 (14).

Diacetate (6a). Mp 109° (MeOH). EI-MS (70 eV) *m/z* (rel. int.): 356 [M]⁺ (63), 314 [M - CH₂CO]⁺ (60), 272 [M - 2CH₂CO]⁺ (100), 163 (19), 162 (68), 150 (75), 137 (34), 135 (36), 123 (12), 107 (8).

4-Hydroxy-2-methoxydihydrochalcone (8). Oil, $[\alpha]_D^{24} \pm 0.0^\circ$ (MeOH; *c* 0.30), R_f (2) 0.57. EI-MS (70 eV) *m/z* (rel. int.): 256.1098 [M]⁺ (C₁₆H₁₆O₃, calcd 256.1096) (90), 179 (8), 151 (11), 137.0598 (C₈H₉O₂, calcd 137.0593) (100), 124 (52), 107 (29), 105.0350 (C₇H₅O, calcd 105.0360) (40), 77 (25). ¹H NMR (500 MHz, CDCl₃): δ 2.96 (2H, *t*, *J* = 8.2 Hz, H- β), 3.22 (2H, *t*, *J* = 8.2 Hz, H- α), 3.78 (3H, *s*, OMe), 6.33 (1H, *dd*, *J* = 7.9; 2.4 Hz, H-5), 6.41 (1H, *d*, *J* = 2.4 Hz, H-3), 7.01 (1H, *d*, *J* = 8.2 Hz, H-6), 7.43 (2H, *t*, *J* = 7.6 Hz, H-3' and H-5'), 7.54 (1H, *t*, *J* = 7.5 Hz, H-4'), 7.97 (2H, *d*, *J* = 7.9 Hz, H-2' and H-6'). ¹³C NMR (125 MHz, CDCl₃): δ 25.2 (C- β), 39.2 (C- α), 55.2 (OMe), 98.8 (C-3), 106.6 (C-5), 121.6 (C-1), 128.1 (C-2' and C-6'), 128.5 (C-3' and C-5'), 130.5 (C-6), 132.9 (C-4'), 137.0 (C-1'), 155.3 (C-4), 158.5 (C-2), 200.3 (C = O).

Acknowledgements—We are grateful to Dr J. Schmidt for MS and Dr U. Himmelreich for NMR measurements, as well as Dr Habil. G. Schneider and Mrs G. Hahn for the HPLC separation. We are indebted to the Bundesministerium für Forschung und Technologie, Bonn, for financial support.

REFERENCES

1. Vierhapper, F. (1907) in *Beiträge zur Kenntnis der Flora Südarabiens und der Inseln Sokotra, Secuha und Abd el Kuri; Denkschriften der Mathematisch-Naturwissenschaftlichen Klasse der Kaiserlichen Akademie der Wissenschaften*, Band 51, p. 336. Kaiserlich-Königliche Hof- und Staatsdruckerei, Wien.
2. Camarda, L., Merlini, L. and Nasini, G. (1983) *Heterocycles* **20**, 39.
3. Meksuriyen, D., Cordell, G. A., Ruangrungsi, N. and Tantivatana, P. (1987) *J. Nat. Prod.* **50**, 1118.
4. Meksuriyen, D. and Cordell, G. A. (1988) *J. Nat. Prod.* **51**, 1129.

5. Meksuriyen, D. and Cordell, G. A. (1988) *J. Sci. Soc. Thailand* **14**, 3.
6. Badib, A. S. (1991) in *The Medicinal Plants of Yemen*, p. 15. Maktabah Alirsad, Sanaa.
7. Suchý, V., Bobovníký, B., Trojánek, J., Buděšínský, M. and Ubík, K. (1991) in *Progress on Terrestrial and Marine Natural Products of Medicinal and Biological Interest* (Pezzuto, J. M. et al., eds), p. 110. American Botanical Council, Austin.
8. Juránek, I., Suchý, V., Stará, D., Mašterová, I. and Grančaiová, Z. (1993) *Pharmazie* **48**, 310.
9. Braz Fihlo, R., Diaz, P. P. and Gottlieb, O. R. (1980) *Phytochemistry* **19**, 455.
10. Achenbach, H., Stöcker, M. and Constenla, M. A. (1988) *Phytochemistry* **27**, 1835.
11. Maxwell, C. A., Hartwig, U. A., Joseph, C. M. and Phillips, D. A. (1989) *Plant Physiol.* **91**, 482.
12. Drewes, S. E. (1974) in *Progress in Mass Spectrometry* (Budzikiewicz, H., ed.), Vol. 2. Verlag Chemie, Weinheim.
13. Saini, K. S. and Ghosal, S. (1984) *Phytochemistry* **23**, 2415.
14. Blasko, G. and Cordell, G. A. (1988) *Heterocycles* **27**, 445.
15. Mabry, T. J. and Ulubelen, A. (1980) in *Biochemical Applications of Mass Spectrometry* (Waller, G. A. and Dermer, O. C., eds), Vol. 1, p. 1142. Wiley Interscience, New York.
16. Markham, K. R. and Chari, V. M. (1982) in *The Flavonoids: Advances in Research* (Harborne, J. B. and Mabry, T. J., eds), p. 27. Chapman & Hall, London.
17. Dick, W. E., Jr. (1981) *J. Agric. Food Chem.* **29**, 305.