

A STEROIDAL ALKALOID FROM *VERATRUM OBLONGUM*

SHIGETOSHI KADOTA,* SHI ZHONG CHEN,† JIAN XIN LI, GUO-JUN XU† and TSUNEO NAMBA

Research Institute for Wakan-Yaku (Traditional Sino-Japanese Medicines), Toyama Medical and Pharmaceutical University, 2630-Sugitani, Toyama 930-01, Japan; †China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, China

(Received in revised form 27 July 1994)

Key Word Index—*Veratrum oblongum*; Liliaceae; roots; oblonginine; Li-lu; steroidal alkaloid; 2D NMR.

Abstract—A new alkaloid, named oblonginine, has been isolated from the roots of *Veratrum oblongum*, along with five known alkaloids. It was determined to be (22*R*,25*S*)-22,26-epiminocholest-5-en-3 β -ol [(22*R*)-22, *N*-dihydroverazine] on the basis of spectroscopic evidence and was shown to be identical with a compound obtained by solanidine degradation.

INTRODUCTION

Veratrum oblongum (Chinese name Changgenglilu) is used to prepare the Chinese crude drug 'Li-lu' which has been traditionally used to treat aphasia arising from apoplexy, wind-type dysentery, jaundice, headache, scabies, chronic malaria, etc. [1]. With regard to their wide application in traditional medicine, constituents of the *Veratrum* species have been extensively studied and more than 90 steroid alkaloids have been reported [2-4]. *Veratrum oblongum* is indigenous to China and no reports of its chemical analysis have been found so far. In this paper, we describe the isolation of a new alkaloid, oblonginine (**1**) and five known steroid alkaloids (**3-7**) from this species. The structure of **1** has been elucidated mainly by NMR spectrometry. The NMR data of the known compounds, **3-7**, are also reported and/or completely assigned for the first time.

RESULTS AND DISCUSSION

The roots of *V. oblongum* were cut into small pieces and extracted with ethanol. The ethanolic extract was extracted successively with petrol, chloroform, acetone and methanol in a Soxhlet apparatus. The acetone-soluble portion was roughly separated by silica gel column chromatography and the fractions obtained were further separated by repeated silica gel column chromatography to give oblonginine (**1**), vanillylzygadenine (**3**), veratroylzygadenine (**4**), angeloylzygadenine (**5**), cevadine (**6**) and shinonomenine (**7**). Of these, the five alkaloids **3-7** were identified by comparisons of their melting points, $[\alpha]_D$ values and/or spectral data with those reported in the literature.

Compound **1** showed a quasi-[M] $^+$ at *m/z* 400 [$C_{27}H_{45}NO + H$] $^+$ in the positive ion FAB-mass spectrum. The IR spectrum showed absorption at ν_{max} 3450, 3330, 2920 and 1660 cm^{-1} , but no absorption for a carbonyl group or a *trans*-quinolizidine, which are more common in this plant genus. The 1H NMR spectrum showed signals owing to two *tert*-methyls (δ 0.70 and 1.01, H_3 -19 and H_3 -18), two *sec*-methyls (δ 0.81 and 0.90, H_3 -27 and H_3 -21), a hydroxyl-bearing methine (δ 3.51, *td*, J = 11.5, 5.5, 4.0 Hz) and a double bond (δ , *m*, 5.34). This spectrum was very similar to that of veramiline (**2**) except for the chemical shifts of four methyl groups [**2**, two *tert*-methyls (δ 0.68 and 1.0) and two *sec*-methyls (δ 0.86 and 1.03)] [5].

In order to analyse the proton and carbon sequences of **1** in detail, we measured the 1H - 1H COSY, 1H - ^{13}C COSY, 1H - ^{13}C long-range COSY (Fig. 1a) and NOE's (Fig. 1b); the results are given in Tables 1 and 2. Based on a consideration of the 1H -splitting, pattern and coupling constants and long-range coupling and NOEs, the relative configuration of the piperidine moiety substituted with a methyl group was proposed to be that as shown in Fig. 1b.

Therefore, oblonginine (**1**) was presumed to be the 22-epimer of veramiline **1** [(22*S*)-22, *N*-dihydroverazine, **2**]. Accordingly, oblonginine was determined to be (22*R*, 25*S*)-22,26-epiminocholest-5-en-3 β -ol [(22*R*)-22, *N*-dihydroverazine, **1**]. The new alkaloid **1** was shown to be identical (*mp*, $[\alpha]_D$) with a compound obtained by the degradation of solanidine [6, 7].

The 1H and ^{13}C NMR data of the compounds **3-7** [8-14] are compiled in Tables 1 and 2, as well as in Fig. 2. Compounds **3-5** were found to be different owing to the substituents at C-3, while **6** was found to be the 12,17-dihydroxy derivative of **5**. The assignments for the 2, 7, 11, 14, 15, 16, 17, 23 and 24 carbon signals of **7** were not established in the papers of Kaneko *et al.* [13, 14].

*Author to whom correspondence should be addressed.

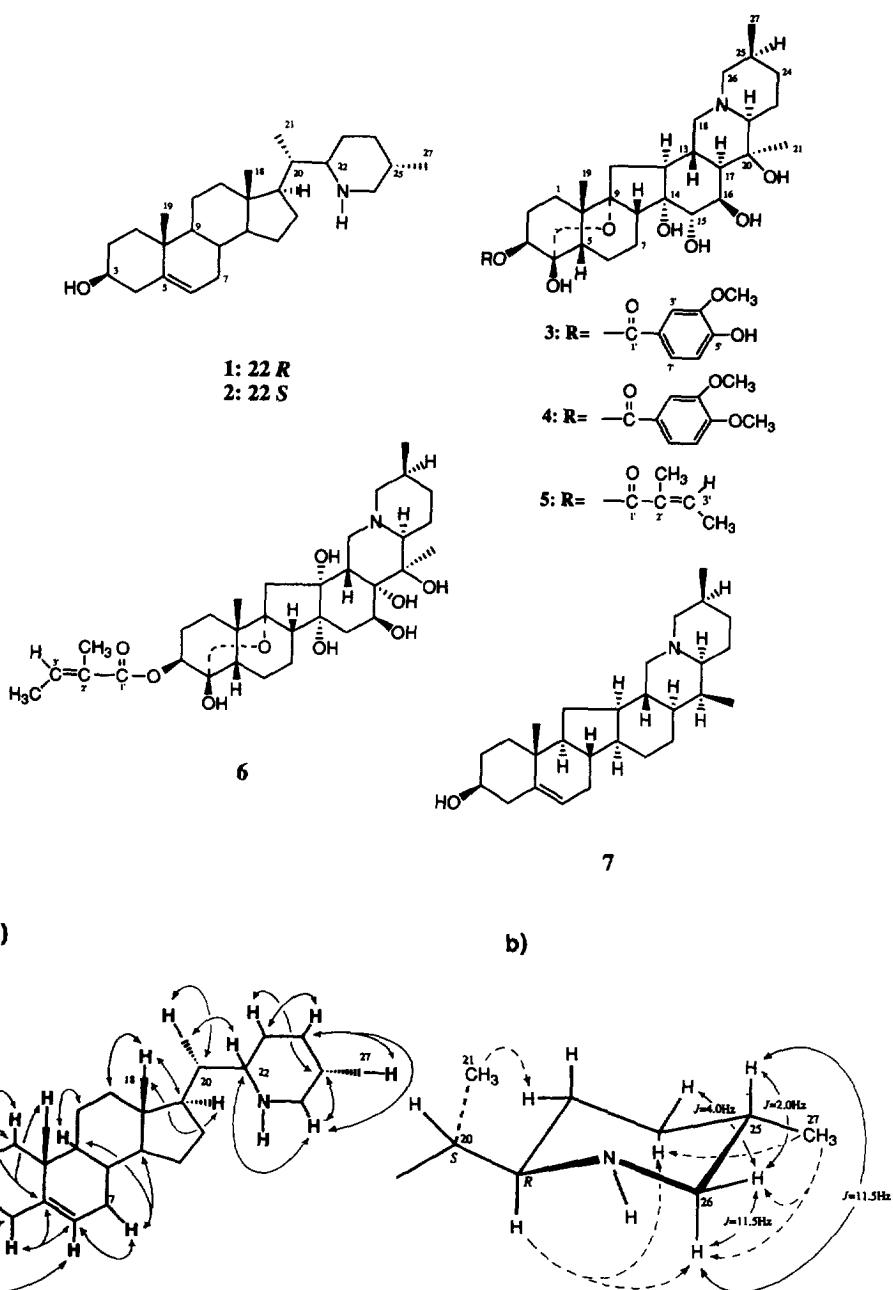


Fig. 1. (a) Significant long range correlations observed in ^1H - ^{13}C long range COSY of 1. (b) Partial structure of 1 (\curvearrowright coupling and long range coupling observed in ^1H - ^1H COSY; \curvearrowleft NOE observed in NOE experiments).

However, our spectral information confirmed the complete assignment for shinonomenine (7). The complete assignment of the ^1H and ^{13}C NMR signals for the known steroid alkaloids 3-7 has not been reported before.

EXPERIMENTAL

Mps: uncorr. IR spectra were recorded in KBr, UV spectra in EtOH solns. NMR spectra were recorded in

CDCl_3 soln with TMS as int. standard. Chemical shifts were recorded in δ values and coupling constants are expressed in Hz. Multiplicities of ^{13}C NMR spectra were determined by the DEPT method. ^1H - ^1H COSY, ^1H - ^{13}C COSY, ^1H - ^{13}C long-range COSY were obtained with standard pulse-sequences. CC was done with Wako-gel C-200 silica gel. Prep. TLC was carried out on Merck Kieselgel GF₂₅₄ plates and spots detected under UV light. TLC analyses were done on Merck Kieselgel GF₂₅₄ plates and spots detected using 1% $\text{Ce}(\text{SO}_4)_2$ -aq. H_2SO_4 (10%) reagent.

Table 1. ^1H NMR spectral data for steroidal alkaloids from *Veratrum oblongum* (δ values in CDCl_3)

^1H	1*	3*	4	5	6*	7*
1	1.05 (<i>m</i>), 1.85 (<i>m</i>)	1.64 (<i>m</i>), 1.77 (<i>m</i>)	1.63 (<i>m</i>), 1.72 (<i>m</i>)	1.55 (<i>m</i>), 1.67 (<i>m</i>)	1.60 (2H, <i>m</i>)	1.27 (<i>td</i> , $J = 13.0, 3.5$)
2	1.55 (<i>m</i>), 1.82 (<i>m</i>)	1.74 (<i>m</i>), 2.22 (<i>m</i>)	1.74 (<i>m</i>), 2.25 (<i>m</i>)	1.67 (<i>m</i>), 2.20 (<i>m</i>)	1.66 (<i>m</i>), 2.10 (<i>m</i>)	1.74 (<i>dt</i> , $J = 13.0, 3.5$)
3	3.51 (<i>dd</i> , $J = 11.5, 5.5$)	5.13 (<i>br d</i> , $J = 4.0$)	5.14 (<i>br d</i> , $J = 4.5$)	5.01 (<i>br d</i> , $J = 4.5$)	5.01 (<i>br d</i> , $J = 4.5$)	1.74 (<i>m</i>), 1.84 (<i>m</i>)
4	2.22 (<i>m</i>), 2.28 (<i>m</i>)	—	—	—	—	3.57 (<i>tt</i> , $J = 11.5, 4.5$)
5	—	2.12 (<i>t</i> , $J = 2.5$)	2.13 (<i>t</i> , $J = 2.0$)	2.06 (<i>t</i> , $J = 3.0$)	2.03 (<i>t</i> , $J = 3.0$)	2.35 (<i>dq</i> , $J = 12.5, 2.5$, 2.21 (<i>m</i>)
6	5.34 (<i>m</i>)	1.75 (<i>m</i>), 1.92 (<i>m</i>)	1.77 (<i>m</i>), 1.94 (<i>m</i>)	1.75 (<i>m</i>), 1.93 (<i>m</i>)	1.73 (<i>m</i>), 1.96 (<i>m</i>)	5.38 (<i>m</i>)
7	1.96 (<i>m</i>), 1.50 (<i>m</i>)	1.61 (<i>m</i>), 1.97 (<i>m</i>)	1.64 (<i>m</i>), 1.98 (<i>m</i>)	1.62 (<i>m</i>), 1.99 (<i>m</i>)	1.76 (<i>m</i>)	2.18 (2H, <i>m</i>)
8	1.45 (<i>m</i>)	2.53 (<i>dd</i> , $J = 11.0, 6.0$)	2.52 (<i>dd</i> , $J = 11.5, 6.0$)	2.50 (<i>dd</i> , $J = 11.0, 6.0$)	2.68 (<i>t</i> , $J = 5.0$)	1.24 (<i>m</i>)
9	0.93 (<i>m</i>)	—	—	—	—	1.10 (<i>m</i>)
11	1.49 (2H, <i>m</i>)	1.56 (<i>m</i>)	1.59 (<i>m</i>)	1.56 (<i>dd</i> , $J = 15.0, 5.0$)	1.82 (<i>d</i> , $J = 16.0$)	1.47 (2H, <i>m</i>)
12	2.01 (<i>dd</i> , $J = 12.5, 4.0$, 2.5)	2.20 (<i>dd</i> , $J = 15.0, 9.0$)	2.21 (<i>dd</i> , $J = 14.5, 8.0$)	2.18 (<i>dd</i> , $J = 15.0, 9.0$)	2.20 (<i>d</i> , $J = 16.0$)	—
	1.16 (<i>m</i>)	1.86 (<i>m</i>)	1.86 (<i>m</i>)	1.88 (<i>m</i>)	—	2.04 (<i>m</i>)
13	—	1.55 (<i>m</i>)	1.55 (<i>m</i>)	1.53 (<i>m</i>)	2.14 (<i>dd</i> , $J = 7.5, 3.0$)	1.70 (<i>m</i>)
14	0.99 (<i>m</i>)	—	—	—	—	1.68 (<i>br t</i> , $J = 5.5$)
15	1.08 (<i>m</i>), 1.60 (<i>m</i>)	3.74 (<i>d</i> , $J = 3.0$)	3.74 (<i>d</i> , $J = 3.5$)	3.73 (<i>d</i> , $J = 3.0$)	1.94 (<i>m</i>), 1.89 (<i>m</i>)	1.12 (<i>m</i>), 1.72 (<i>m</i>)
16	1.74 (<i>m</i>), 1.35 (<i>m</i>)	4.43 (<i>br s</i>)	4.42 (<i>dd</i> , $J = 3.0, 2.0$)	4.41 (<i>dd</i> , $J = 3.0, 2.0$)	4.15 (<i>t</i> , $J = 3.0$)	1.15 (<i>m</i>), 1.59 (<i>m</i>)
17	1.21 (<i>m</i>)	1.44 (<i>br d</i> , $J = 12.0$)	1.44 (<i>br d</i> , $J = 12.0$)	1.43 (<i>br d</i> , $J = 12.0$)	—	1.42 (<i>dd</i> , $J = 11.5, 5.0$)
18	0.70 (<i>s</i>)	1.71 (<i>m</i>)	1.71 (<i>m</i>)	1.70 (<i>m</i>)	2.62 (2H, <i>m</i>)	2.01 (<i>m</i>)
19	1.01 (<i>s</i>)	2.69 (<i>dd</i> , $J = 11.0, 3.5$)	2.68 (<i>dd</i> , $J = 12.0, 4.0$)	2.68 (<i>dd</i> , $J = 11.0, 4.0$)	2.68 (<i>dd</i> , $J = 11.0, 4.0$)	2.14 (<i>br d</i> , $J = 11.0$)
	1.02 (<i>s</i>)	1.04 (<i>s</i>)	1.04 (<i>s</i>)	1.01 (<i>s</i>)	1.01 (<i>s</i>)	1.00 (<i>s</i>)
20	1.51 (<i>m</i>)	—	—	—	—	1.81 (<i>m</i>)
21	0.90 (<i>d</i> , $J = 6.5$)	1.24 (<i>s</i>)	1.24 (<i>s</i>)	1.23 (<i>s</i>)	1.15 (<i>s</i>)	1.07 (<i>d</i> , $J = 7.0$)
22	2.45 (<i>dt</i> , $J = 11.0, 2.5$)	1.78 (<i>br d</i> , $J = 6.0$)	1.80 (<i>br d</i> , $J = 5.5$)	1.72 (<i>dd</i> , $J = 15.0, 3.0$)	2.05 (<i>br d</i> , $J = 9.0$)	1.27 (<i>m</i>)
23	1.49 (<i>m</i>), 1.11 (<i>m</i>)	1.54 (<i>m</i>), 1.66 (<i>m</i>)	1.54 (<i>m</i>), 1.65 (<i>m</i>)	1.52 (<i>m</i>), 1.62 (<i>m</i>)	1.90 (2H, <i>m</i>)	1.26 (<i>m</i>), 1.65 (<i>m</i>)
24	0.96 (<i>m</i>), 1.79 (<i>m</i>)	1.50 (<i>m</i>), 1.60 (<i>m</i>)	1.53 (<i>m</i>), 1.63 (<i>m</i>)	1.50 (<i>m</i>), 1.58 (<i>m</i>)	1.57 (2H, <i>m</i>)	1.50 (<i>m</i>), 1.69 (<i>m</i>)
25	1.43 (<i>m</i>)	1.90 (<i>m</i>)	1.91 (<i>m</i>)	1.89 (<i>m</i>)	1.91 (<i>m</i>)	1.82 (<i>m</i>)
26	3.02 (<i>ddd</i> , $J = 11.5, 4.0, 2.0$)	2.28 (<i>dd</i> , $J = 11.5, 3.5$)	2.28 (<i>dd</i> , $J = 11.5, 3.0$)	2.27 (<i>dd</i> , $J = 11.0, 3.0$)	2.43 (<i>br d</i> , $J = 9.0$)	2.20 (<i>m</i>)
	2.26 (<i>t</i> , $J = 11.5$)	2.65 (<i>br d</i> , $J = 11.5$)	2.64 (<i>br d</i> , $J = 11.5$)	2.64 (<i>dd</i> , $J = 11.0, 3.5$)	2.65 (<i>m</i>)	2.50 (<i>br d</i> , $J = 11.0$)
27	0.81 (<i>d</i> , $J = 6.5$)	1.08 (<i>d</i> , $J = 7.5$)	1.09 (<i>d</i> , $J = 7.0$)	1.08 (<i>d</i> , $J = 7.0$)	1.10 (<i>d</i> , $J = 7.0$)	0.97 (<i>d</i> , $J = 6.0$)
3'	—	7.53 (<i>d</i> , $J = 2.0$)	7.52 (<i>d</i> , $J = 2.0$)	6.12 (<i>qq</i> , $J = 7.0, 1.5$)	6.14 (<i>qq</i> , $J = 7.0, 1.5$)	—
6'	—	6.93 (<i>d</i> , $J = 8.0$)	6.88 (<i>d</i> , $J = 8.0$)	—	—	—
7'	—	7.62 (<i>dd</i> , $J = 8.0, 2.0$)	7.67 (<i>dd</i> , $J = 8.0, 2.0$)	—	—	—
Me-2'	—	—	—	1.90 (<i>quintet</i> , $J = 1.5$)	1.89 (<i>quintet</i> , $J = 1.5$)	—
Me-3'	—	—	—	2.00 (<i>dq</i> , $J = 7.0, 1.5$)	2.00 (<i>dq</i> , $J = 7.0, 1.5$)	—
OMe-4'	—	3.95 (<i>s</i>)	3.93 (<i>s</i>)	—	—	—
OMe-5'	—	—	3.95 (<i>s</i>)	—	—	—
OH-4	—	—	—	3.74 (<i>s</i>)	3.99 (<i>brs</i>)	—
OH-14	—	—	—	—	4.65 (<i>s</i>)	—
OH-15	—	4.21 (<i>s</i>)	—	3.72 (<i>s</i>)	—	—
OH-16	—	3.27 (<i>s</i>)	—	4.19 (<i>s</i>)	—	—
OH-20	—	4.70 (<i>s</i>)	3.32 (<i>s</i>)	4.72 (<i>s</i>)	4.72 (<i>s</i>)	—

*Difference NOE spectra were measured.
 ^1H - ^1H shift correlation spectra were measured.

Table 2. ^{13}C NMR spectral data for steroidal alkaloids from *Veratrum oblongum* (δ values in CDCl_3)

C	1*	3†	4‡	5‡	6†	7†
1	37.3 <i>t</i>	32.8 <i>t</i>	32.9 <i>t</i>	32.8 <i>t</i>	32.4 <i>t</i>	38.6 <i>t</i>
2	31.7 <i>t</i>	26.9 <i>t</i>	26.9 <i>t</i>	26.9 <i>t</i>	26.7 <i>t</i>	31.7 <i>t</i>
3	71.7 <i>d</i>	75.9 <i>d</i>	75.9 <i>d</i>	75.1 <i>d</i>	75.1 <i>d</i>	72.1 <i>d</i>
4	42.4 <i>t</i>	105.0 <i>s</i>	104.9 <i>s</i>	105.0 <i>s</i>	105.1 <i>s</i>	41.9 <i>t</i>
5	140.9 <i>s</i>	46.5 <i>d</i>	46.5 <i>d</i>	46.4 <i>d</i>	46.1 <i>d</i>	142.3 <i>s</i>
6	121.6 <i>d</i>	19.1 <i>t</i>	19.1 <i>t</i>	19.0 <i>t</i>	18.3 <i>t</i>	123.0 <i>d</i>
7	32.0 <i>t</i>	17.2 <i>t</i>	17.2 <i>t</i>	17.2 <i>t</i>	16.9 <i>t</i>	33.0 <i>t</i>
8	32.0 <i>d</i>	44.0 <i>d</i>	44.0 <i>d</i>	43.9 <i>d</i>	44.7 <i>d</i>	39.5 <i>d</i>
9	50.2 <i>d</i>	96.3 <i>s</i>	96.3 <i>s</i>	96.2 <i>s</i>	94.5 <i>s</i>	55.8 <i>d</i>
10	36.5 <i>s</i>	45.9 <i>s</i>	45.9 <i>s</i>	45.7 <i>s</i>	45.5 <i>s</i>	37.0 <i>s</i>
11	21.1 <i>t</i>	33.3 <i>t</i>	33.3 <i>t</i>	33.2 <i>t</i>	42.1 <i>t</i>	30.5 <i>t</i>
12	39.9 <i>t</i>	46.3 <i>d</i>	46.4 <i>d</i>	46.3 <i>d</i>	81.7 <i>s</i>	43.3 <i>d</i>
13	42.5 <i>s</i>	34.2 <i>d</i>	34.2 <i>d</i>	34.1 <i>d</i>	36.9 <i>d</i>	38.6 <i>d</i>
14	56.7 <i>d</i>	80.8 <i>s</i>	80.8 <i>s</i>	80.8 <i>s</i>	80.3 <i>s</i>	42.2 <i>d</i>
15	24.3 <i>t</i>	69.8 <i>d</i>	69.9 <i>d</i>	69.8 <i>d</i>	31.6 <i>t</i>	26.9 <i>t</i>
16	27.8 <i>t</i>	70.3 <i>d</i>	70.4 <i>d</i>	70.3 <i>d</i>	71.0 <i>d</i>	25.5 <i>t</i>
17	53.2 <i>d</i>	44.3 <i>d</i>	44.3 <i>d</i>	44.2 <i>d</i>	72.0 <i>s</i>	42.8 <i>d</i>
18	11.8 <i>q</i>	61.7 <i>t</i>	61.7 <i>t</i>	61.8 <i>t</i>	51.4 <i>t</i>	62.4 <i>t</i>
19	19.4 <i>q</i>	19.1 <i>q</i>	19.1 <i>q</i>	19.0 <i>q</i>	19.0 <i>q</i>	18.8 <i>q</i>
20	41.0 <i>d</i>	73.3 <i>s</i>	73.3 <i>s</i>	73.2 <i>s</i>	75.8 <i>s</i>	35.2 <i>d</i>
21	13.6 <i>q</i>	19.9 <i>q</i>	19.9 <i>q</i>	19.8 <i>q</i>	15.5 <i>q</i>	17.8 <i>q</i>
22	59.1 <i>d</i>	70.3 <i>d</i>	70.2 <i>d</i>	69.7 <i>d</i>	63.6 <i>d</i>	68.4 <i>d</i>
23	25.3 <i>t</i>	18.4 <i>t</i>	18.4 <i>t</i>	18.4 <i>t</i>	18.9 <i>t</i>	25.5 <i>t</i>
24	34.0 <i>t</i>	29.0 <i>t</i>	29.0 <i>t</i>	28.9 <i>t</i>	29.0 <i>t</i>	32.3 <i>t</i>
25	32.8 <i>d</i>	27.4 <i>d</i>	27.4 <i>d</i>	27.4 <i>d</i>	27.5 <i>d</i>	28.0 <i>d</i>
26	55.3 <i>t</i>	61.4 <i>t</i>	61.4 <i>t</i>	61.3 <i>t</i>	61.2 <i>t</i>	61.7 <i>t</i>
27	19.6 <i>q</i>	17.1 <i>q</i>	17.1 <i>q</i>	17.1 <i>q</i>	17.1 <i>q</i>	16.0 <i>q</i>
1'	—	167.3 <i>s</i>	167.2 <i>s</i>	168.4 <i>s</i>	168.7 <i>s</i>	—
2'	—	121.8 <i>s</i>	122.3 <i>s</i>	127.6 <i>s</i>	127.4 <i>s</i>	—
3'	—	112.1 <i>d</i>	110.2 <i>d</i>	138.9 <i>d</i>	139.5 <i>d</i>	—
4'	—	146.4 <i>s</i>	148.8 <i>s</i>	—	—	—
5'	—	150.6 <i>s</i>	153.4 <i>s</i>	—	—	—
6'	—	114.2 <i>d</i>	112.3 <i>d</i>	—	—	—
7'	—	124.4 <i>d</i>	123.8 <i>d</i>	—	—	—
Me-2'	—	—	—	20.6 <i>q</i>	20.6 <i>q</i>	—
Me-3'	—	—	—	15.9 <i>q</i>	16.0 <i>q</i>	—
OMe-4'	—	56.2 <i>q</i>	56.1 <i>q</i>	—	—	—
OMe-5'	—	—	56.0 <i>q</i>	—	—	—

Multiplicities of carbon signals determined by distortionless enhancement using polarization (DEPT).

* ^1H - ^{13}C COSY and ^1H - ^{13}C long-range COSY spectra.

† ^1H - ^{13}C COSY and HMBC spectra.

‡Only complete decoupling spectrum was measured.

Isolation of alkaloids. Dried roots (9.8 kg) of *Veratrum oblongum* Loes. f. collected at Shennongjia in Hu-bei province, China, in July 1992, were cut into small pieces and extracted $\times 3$ (3 hr) with boiling 95% EtOH (15 l). The EtOH solns were combined and concd *in vacuo*. The residue was further extracted successively with petrol (3 l), CHCl_3 (3 l), Me_2CO (3 l) and MeOH (3 l) in a Soxhlet apparatus to give petrol (185 g), CHCl_3 (50 g), Me_2CO (143 g) and MeOH extracts (289 g). The Me_2CO extract was subjected to CC on silica gel (1.2 kg). Elution with CHCl_3 , CHCl_3 - MeOH [49:1 (6 l); 9:1 (4 l); 22:3 (3 l); 17:13 (3 l); 73:21 (5 l)] gave fr. I (4 g), II (12 g), III (17 g), IV (10 g), V (23 g) and VI (95 g). TLC analysis with hexane- Me_2CO - NH_4OH (80:20:1), C_6H_6 - Me_2CO -

NH_4OH (80:20:1) and C_6H_6 - Me_2CO - NH_4OH (60:40:1) gave spots of frs III, IV and V, which were indicated alkaloid-positive by spraying Dragendorff's reagent. Fr. III (17 g) was chromatographed over silica gel (120 g) with hexane- Me_2CO - NH_4OH (80:20:1). Eluates were monitored by TLC and sepd into 6 frs. Fr. 3 was recrystallized from Me_2CO -hexane to give oblonginine (1) (121 mg). Fr. IV (10 g) was chromatographed over silica gel (400 g) with C_6H_6 - Me_2CO - NH_4OH (80:20:1 and 60:40:1) and sepd into 4 frs. Fr. 3 was further purified by silica gel CC [120 g, C_6H_6 - Me_2CO - NH_4OH (80:20:1)] to give cevadine (6) (130 mg), angeloylzygadenine (5) (11 mg) and veratroylzygadenine (4) (9 mg). Fr. V (23 g) was chromatographed

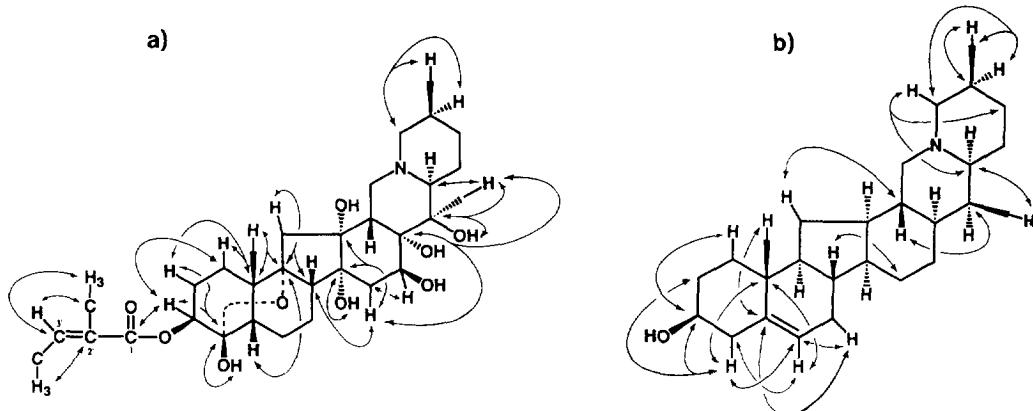


Fig. 2. (a) Significant long range correlations observed in ^1H - ^{13}C long range COSY experiment of 6. (b) Significant long range correlations observed in HMBC experiment of 7.

over silica gel (400 g) with $\text{CHCl}_3\text{-Me}_2\text{CO-MeOH-NH}_4\text{OH}$ (100:10:10:1) and sepd into 6 frs. Fr. 2 was recrystallized from Me_2CO -hexane to give shinonomenine (7) (25 mg). Fr. 3 was subjected repeatedly to prep. TLC with $\text{C}_6\text{H}_6\text{-Me}_2\text{CO-NH}_4\text{OH}$ (60:30:1) to give vanillyloylzygadenine (3) (19 mg).

Oblonginine (1). Pillars, mp 219–220°. $[\alpha]_D$ – 40.7° (CHCl_3 ; c 0.11). UV λ_{max} nm (log ε): 213 (2.78). IR ν_{max} cm^{-1} : 3450, 3330, 2970, 2920, 2850, 1660. ^1H and ^{13}C NMR in Tables 1 and 2. Positive-ion FAB-MS, m/z : 400 [$\text{M} + \text{H}$]⁺.

Vanillyloylzygadenine (3). Needles, mp 235–238°. $[\alpha]_D$ – 30.8° (CHCl_3 ; c 0.05). [Lit. [8], mp 258–259°. $[\alpha]_D$ – 27.5° (CHCl_3)]. UV λ_{max} nm (log ε): 210 (4.00), 220 (4.05), 262 (3.89), 292 (3.54). IR ν_{max} cm^{-1} : 3360, 2890, 2750, 1710, 1660. ^1H and ^{13}C NMR in Tables 1 and 2. Positive-ion FAB-MS, m/z : 644 [$\text{M} + \text{H}$]⁺.

Veratroylzygadenine (4). Needles, mp 260–262°. $[\alpha]_D$ – 27.9° (CHCl_3 ; c 0.07) [Lit. [8], mp 278–280°, $[\alpha]_D$ – 27° (CHCl_3)]. UV λ_{max} nm (log ε): 220 (4.16), 262 (3.99), 292 (3.70). IR ν_{max} cm^{-1} : 3460, 2960, 2930, 2850, 2760, 1720, 1610. ^1H and ^{13}C NMR in Tables 1 and 2. Positive-ion FAB-MS, m/z : 658 [$\text{M} + \text{H}$]⁺.

Angeloylzygadenine (5). Needles, mp 225–226°. $[\alpha]_D$ – 32.4° (CHCl_3 ; c 0.06) [Lit. [9, 10], mp 222–224°, $[\alpha]_D$ – 35° (CHCl_3)]. UV λ_{max} nm (log ε): 245 (3.85). IR ν_{max} cm^{-1} : 3450, 2950, 2920, 2850, 2810, 2770, 2760, 1710, 1645. ^1H and ^{13}C NMR in Tables 1 and 2. Positive-ion FAB-MS, m/z : 576 [$\text{M} + \text{H}$]⁺.

Cevadine (6). Needles, mp 206–209°. $[\alpha]_D$ + 10.0° (EtOH ; c 0.20) [Lit. [11, 12], mp 213–214°, $[\alpha]_D$ + 13° (EtOH ; c 0.97)]. UV λ_{max} nm (log ε): 220 (3.91), 262 (3.48), 292 (3.18). IR ν_{max} cm^{-1} : 3410, 2920, 2890, 2840, 2780, 1710, 1640. ^1H and ^{13}C NMR in Tables 1 and 2. EI-MS m/z : 591 ([M]⁺), 573, 572, 556, 548, 509, 492, 154, 140, 128, 112, 98. HR-MS m/z : 591.3372 [M]⁺, $\text{C}_{32}\text{H}_{49}\text{NO}_9$ (calcd 591.3337).

Shinonomenine (7). Needles, mp 99–100°. $[\alpha]_D$ – 80.7° (CHCl_3 ; c 0.40) [Lit. [13, 14], mp 95–96°, $[\alpha]_D$ – 90.7° (CHCl_3 ; c 0.33)]. UV λ_{max} nm (log ε): 218 (3.94), 270 (3.12). IR ν_{max} cm^{-1} : 3400, 2950, 2920, 2850, 2790, 2750, 2740, 2700, 2650, 1650. ^1H and ^{13}C NMR in Tables 1 and 2. Positive-ion FAB-MS, m/z : 398 [$\text{M} + \text{H}$]⁺.

REFERENCES

1. Chiang Su New Medicinal College (1977) *Dictionary of Chinese Crude Drugs*, p. 2692. Shanghai Scientific, Shanghai.
2. Harrison, D. M. (1986) *Nat. Prod. Rep.* **3**, 446.
3. Harrison, D. M. (1984) *Nat. Prod. Rep.* **1**, 221.
4. Tomko, J. and Voticky, Z. (1973) *The Alkaloids* Vol. 14 (Manske, R. H. F., ed.), p. 5. Academic Press, New York.
5. Vassova, A., Voticky, Z. and Tomko, J. (1977) *Collect. Czech. Chem. Commun.* **42**, 3643.
6. Beisler, J. A. and Sato, Y. (1971) *J. Chem. Soc. (C)* **149**.
7. Beisler, J. A. and Sato, Y. (1968) *Chem. Commun.* 963.
8. Kupchan, S. M. and Deliwala, C. V. (1953) *J. Am. Chem. Soc.* **75**, 1025.
9. Zhao, W., Tezuka, Y., Kikuchi, T., Chen, J. and Guo, Y. (1989) *Chem. Pharm. Bull.* **37**, 2920.
10. Zhao, W., Chen, J. and Guo, Y. (1986) *Zhongyou Tongbao* **11**, 294.
11. Kupchan, S. M., Lavie, D., Deliwala, C. V. and Andoh, B. Y. A. (1953) *J. Am. Chem. Soc.* **75**, 5519.
12. Stoll, A. and Seebeck, E. (1952) *Helv. Chim. Acta* **35**, 1270.
13. Kaneko, K., Tanaka, M., Haruki, K., Naruse, N. and Mitsuhashi, H. (1979) *Tetrahedron Letters* 3737.
14. Kaneko, K., Kawamura, N., Kurabayashi, T., Tanaka, M. and Mitsuhashi, H. (1978) *Tetrahedron Letters* 4801.