

SCUTIANINE-J, A CYCLOPEPTIDIC ALKALOID ISOLATED FROM *SCUTIA BUXIFOLIA*

ANTÔNIO SEVERO MENEZES, MARCO AURÉLIO MOSTARDEIRO, NILO ZANATTA and ADEMIR FARIAS MOREL*

Departamento de Química, Universidade Federal de Santa Maria, 97.119-900, Santa Maria, RS Brazil

(Received in revised form 19 July 1994)

Key Word Index—*Scutia buxifolia*; Rhamnaceae; peptide alkaloid; scutianine-J; FAB-MS.

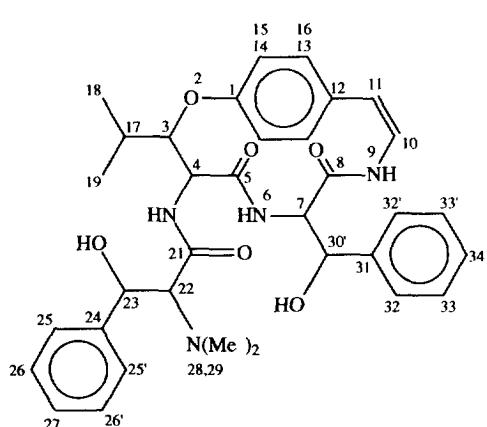
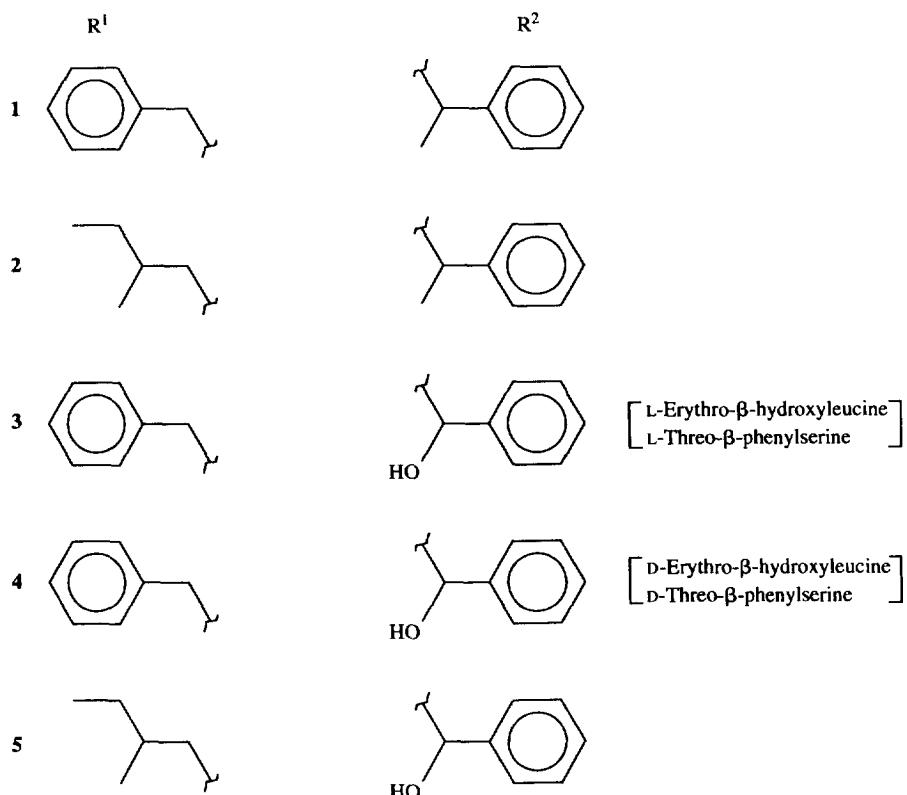
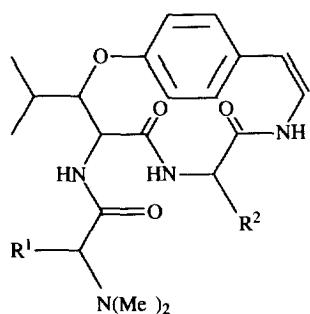
Abstract—From the methanol extract of the bark of *S. buxifolia* Reiss (Rhamnaceae), a new cyclopeptidic alkaloid, together with the already known alkaloids scutianines-B-E, were isolated. On the basis of elemental analysis, mass spectroscopy (EI and FAB) and ¹H NMR spectroscopy, the molecular structure of scutianine-J has been elucidated.

INTRODUCTION

Cyclopeptidic alkaloids are poliamidic bases found in many families of plants, mainly in species that belong to the Rhamnaceae [1, 2]. These molecules are composed of 13-, 14-, or 15-membered macrocycles which as general structural elements bear two amino acids and a styrylamine unit. This class of compounds calls for special attention due to the different biological activities exhibited by many of them, e.g. hypotensive [3], anti-diarrhoeal and anti-dysenteric [4], anti-fungal and antibiotic [1, 2]. As a result of these interesting biological activities, the number of investigations concerning the isolation, structure determination and synthesis of these compounds is increasing [1, 2, 5, 6].

Plants from which these alkaloids were isolated have been applied as popular medicine in many parts of the world for centuries [7-10].

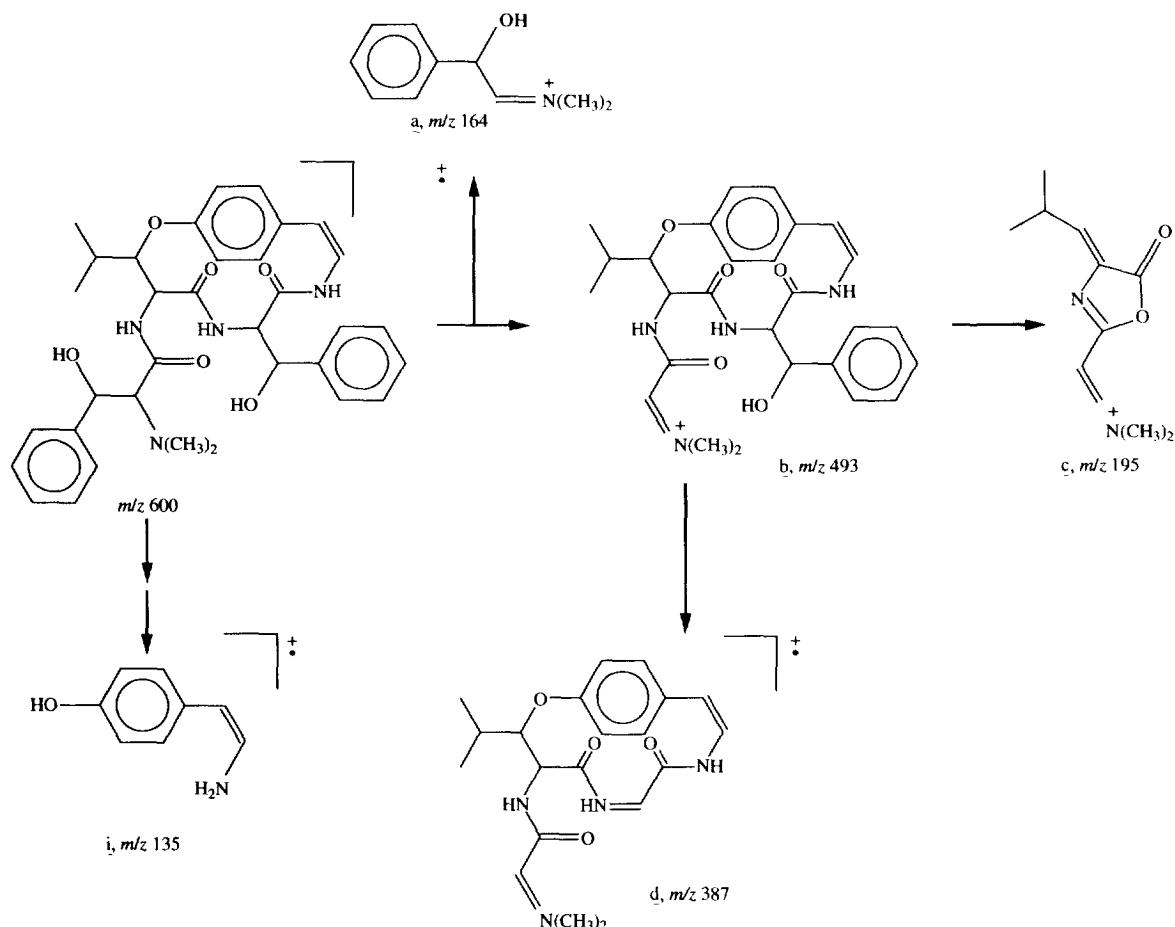
RESULTS AND DISCUSSION




The isolation and characterization of several cyclopeptidic alkaloids of 14-membered rings, from the methanolic extract of the bark of *Scutia buxifolia* and *Discaria febrifuga*, were described in former publications [1-6]. In continuation of this work, an exhaustive chromatographic analysis was done on a new extract of *Scutia buxifolia*, which furnished nine fractions of different *R*_fs, all of them giving a positive reaction with Dragendorff's reagent. In five of these fractions we found the formerly isolated alkaloids, scutianine-B(1), -C(2), -D(3), -E(4) and -H(5). The remaining fractions contained basic compounds of lower *R*_f. From these more polar fractions, one pure alkaloid could be isolated by TLC applying various

solvent systems. The structure of the new alkaloid called scutianine-J, which is shown in structure 6, was elucidated by fragmentation analysis (EI, low resolution) and FAB (Fast Atom Bombardment) mass spectra, elemental analysis and ¹H NMR spectra of 6.

The molecular formula of scutianine-J was derived from mass spectroscopy and elemental analysis as C₃₄H₄₀N₄O₆. The FAB(+) spectrum of this alkaloid shows a [M + H]⁺ ion with *m/z* of 601 [14 amu more than (3) and (4)]. The EI mass spectrum (see Scheme) exhibits peaks that allow important conclusions for the elucidation of structure 6. The base peak b at *m/z* 493, derived from initial cleavage, indicates the residues that form the macrocyclic system. Further decomposition of this fragment gives peak c at *m/z* 195, proving the presence of β -hydroxyleucine as the amino acid residue that forms the phenol-ether bond in the macrocyclic system. The peak d at *m/z* 387 appears due to the loss of C₇H₇O from b. This suggests β -phenylserine as α -amino acid in the peptide alkaloid. The ion i at *m/z* 135 [C₈H₉NO]⁺ reveals the presence of a styrylamine unit characterizing the 14-membered ring. The fragment at *m/z* 106 [C₆H₅C=O]⁺ and the ions at *m/z* 105 [C₆H₅C=O]⁺ and *m/z* 107 [C₆H₅CH=OH]⁺ can easily be assigned to β -phenylserine as the α -amino acid unit of the ring.

The ¹H NMR spectrum (CDCl₃, 250 MHz) of 6 shows, in addition to a resonance at 2.20 ppm (*s*, -N[Me]), significant resonances at 0.95 (3H, *d*, 19-Me) and 1.20 (3H, *d*, 18-Me). In the two dimensional COSY (¹H-¹H) spectrum, these two doublets have a cross-peak with the signal at 2.10 ppm (1H, *m*), which corresponds to H-17. In its turn, H-17 shows a cross-peak with H-3 at 4.80 ppm and this with H-4 at 4.35 ppm. H-4 exhibits another cross-peak with H-20 (NH-) which resonated at δ 7.60. This spin system confirms the hydroxyleucine as the hydroxylated amino acid of the macrocycle ring, β -phenylserine, which is the α -amino acid of the macrocycle,


*Author to whom correspondence should be addressed.

was identified by cross-peaks between H-6 (NH-), H-7 and H-24. H-7 resonates at 4.35 ppm (superimposed by H-4) and shows cross-peaks with H-6 (NH) which absorb at 6.20 ppm and with H-23 resonating at 4.80 ppm (superimposed with H-3 and the OH-23). The two olefinic protons H-10 at 6.28 ppm and H-11 at 7.75 ppm show the expected coupling between themselves, H-10 having a second cross-peak with NH-9 at 6.55 ppm. This spin system indicates the presence of the styrylamine moiety. The 14 aromatic protons of **6** resonate in the range of 6.75–6.90 ppm and are difficult to assign due to heavy superimposition of the resonance lines. The foregoing evidence is in good agreement with structure **6** for scutianine-J.

EXPERIMENTAL

Extraction of Scutia buxifolia. The plant material was collected at Livramento (Rio Grande do Sul, Brazil) in

Scheme 1. Mass fragmentation of scutianine-J.

March 1993. The powdered bark (10 kg) was extracted exhaustively with MeOH, yielding a mixt. of alkaloids as a residue (9.6 g).

Isolation of the alkaloids. The alkaloid mixt. was fractionated on a SiO_2 chromatographic column using mixts of CHCl_3 –MeOH as solvent and on TLC, as further purification was required.

Scutianine-J (6). Crystallization of the resultant solid (50 mg) from CHCl_3 – Et_2O gave **6**, mp: amorphous. No UV absorption. IR ν cm^{-1} : 3600, 3280, 1650, 1625, 1250. MS m/z (rel. int.) 493 (1.5), 387 (3.6), 385 (4.7), 331 (3.1), 195 (2.1), 164 (100), 135 (30.0), 107 (26), 106 (60.0), 105 (61.0), 77 (73.6). ^1H NMR (CDCl_3): δ 0.95 (3H, d, $J = 6.4$ Hz), 1.20 (3H, d, $J = 6.4$ Hz), 2.0 (1H, m), 2.20 (6H, s), 4.35 (2H, m), 4.80 (2H, m), 6.20 (1H, d, $J = 9.5$ Hz), 6.28 (1H, m), 6.55 (1H, d, $J = 9.5$ Hz), 7.60 (1H, d, $J = 7.60$ Hz), 6.75–6.90 (14H, Ar.).

Acknowledgements—We thank Prof. W. A. König, Institut für Organische Chemie der Universität Hamburg, for FAB-MS measurements. This work was supported by CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) and by FAPERGS (Fundação de Amparo a Pesquisa do Rio Grande do Sul).

REFERENCES

1. Tschesche, R. and Kaussman (1975) in *The Alkaloids* (Manske, R. H. F., ed.), Vol. 15, p. 165, Academic Press, New York.
2. Schmidt, U. and Lieberknecht, A. (1985) in *The Alkaloids* (Brossi, A., ed.), Vol. 26, p. 299, Academic Press, New York.
3. Tschesche, R., Frohberg, E. and Fehlhaber, H. V. (1970) *Ber.* **103**, 2501.
4. Bertho, A. and Liang, W. S. (1973) *Arch. Pharm. (Weinheim)* **271**, 273.
5. Schmidt, U., Lieberknecht, A., Bökens, H. and Grieser, H. J. (1983) *J. Org. Chem.* **48**, 2680.
6. Schmidt, U., Lieberknecht, A., Bökens, H. and Grieser, H. J. (1983) *Liebigs Ann. Chem.* **48**, 1459.
7. Warnhoff, E. W. (1970) *Fortschr. Chem. Org. Naturst.* **28**, 162.
8. Marchand, J., Rocchioli, R., Pais, M. and Jarreau, F. X. (1972) *Bull. Soc. Chim. Fr.* 4699.
9. Warnhoff, E. W., Ma, J. C. N. and Warnhoff, J. (1965) *J. Am. Chem. Soc.* **87**, 4198.
10. Tschesche, R. and Reutel, I. (1968) *Tetrahedron Letters* 3817.

11. Morel, A. F., Bravo, R. V. F., Reis, F. D. A. M. and Ruveda, E. A. (1979) *Phytochemistry* **18**, 473.
12. Digel, M., Morel, A. F., Biermann, J. and Voelter, W. (1983) *Z. Physiol. Chem.* **364**, 1641.
13. Morel, A. F., Herzog, R., Biermann, J. and Voelter, W. (1984) *Z. Naturforsch.* **34b**, 1825.
14. Morel, A. F., Herzog, R. and Voelter, W. (1985) *Chimia* **4**, 98.
15. Henning, P., Morel, A. F. and Voelter, W. (1986) *Z. Naturforsch.* **41b**, 1180.
16. Voelter, W. and Morel, A. F. (1987) *Z. Naturforsch.* **42b**, 467.