

STEROLS AND TRITERPENOIDS FROM *DRACAENA CINNABARI*

MOHAMED MASAOUD, JÜRGEN SCHMIDT and GÜNTHER ADAM*

Institute of Plant Biochemistry, Weinberg 3, D-06120 Halle/S., Germany

(Received 29 July 1994)

Key Word Index—*Dracaena cinnabari*; Agavaceae; phytosterols; triterpenoids.

Abstract—Cholest-4-en-3-one, 4 α -methylcholest-7-en-3 β -ol, 4 α ,14 α -dimethylcholest-8-en-3 β -ol, 31-norcycloartanol, lanost-7-en-3 β -ol, cholesterol, campesterol, stigmasterol, sitosterol, stigmastanol, stigmast-22-en-3 β -ol, cycloartanol, 24-methylenecycloartanol, lupeol and betulin have been isolated from resin (dragon's blood) or roots of *Dracaena cinnabari* and identified by capillary GC and GC-mass spectrometry.

INTRODUCTION

The medicinal plant *Dracaena cinnabari* Balf. fil., growing endemic in the Socotra Island of Yemen, is known as dragon's blood tree. Phytochemical study of this plant has previously led to the isolation of several flavonoids [1, 2] and with cinnabarone to a new type of biflavanoid [3]. We now report the isolation and identification of sterols and triterpenoid constituents of this plant.

RESULTS AND DISCUSSION

The sterols 4 α -methylcholest-7-en-3 β -ol (lophenol) [4], 4 α ,14 α -dimethylcholest-8-en-3 β -ol (31-nordihydrolanosterol) [5], 31-norcycloartanol [4] and lanost-7-en-3 β -ol [6] were isolated from resin of *D. cinnabari* and their structures have been identified on the basis of the mass spectra of the corresponding acetate by comparison with reported data. Furthermore, the elution order in GC compared with other sterols are in agreement with the supposed structures [7]. Cholest-4-en-3-one, which has been previously isolated from the sponges *Stelletta clarella* [8] and *Cinachyra terentina* [9], was identified on the basis of mass spectral fragmentation compared with literature data. Of special interest is the occurrence of the scarce mono- and dimethylsterols as well as of cholest-4-en-3-one in resin of *D. cinnabari* whereas lophenol is the dominating component (86%).

Cycloartanol and 24-methylenecycloartanol [10], isolated from resin, have been identified from GC and GC-mass spectra by comparison with authentic samples. The resin and roots of *D. cinnabari* show a different pattern of sterols and triterpenes (Tables 1 and 2). The lupane type triterpenes lupeol and betulin represents the major compounds in roots of *D. cinnabari*. Their structures were identified by comparison of the spectroscopic (MS,

^{13}C NMR) and physical data (mp, $[\alpha]_D$) compared with the literature [11-13]. While betulin only occurs in roots, lupeol could be detected both in roots and resin of *D. cinnabari*. In resin lupeol was identified by GC-mass spectra (Table 1). The phytosterols cholesterol, campesterol, stigmasterol, sitosterol, stigmast-22-en-3 β -ol and stigmastanol could be determined from GC and GC-mass spectra as their acetates by comparison with the reported data [7, 10, 14]. The configurations at C-24 were not determined and are assumed to be 24 α in accord with the major sterols found in many higher plants.

EXPERIMENTAL

Plant material. Dragon's blood and roots from *D. cinnabari* were collected in Socotra Island of Yemen in summer 1992. Voucher specimens of resin and roots are deposited at the Institute of Plant Biochemistry, Halle.

Extraction and isolation. The powdered resin (500 g) was extracted with *n*-hexane and the extract was concentrated *in vacuo* (40°). The residue (2.8 g) was chromatographed on a silica gel column (Merck 60, 0.063-0.20 mm) and eluted with *n*-hexane-EtOAc (9:1) in 20 ml frs. The combined frs 5-7 were evaporated and the residue (5 mg) was acetylated with Ac_2O -pyridine. The acetate mixture was examined by capillary GC and GC-MS to reveal cholest-4-en-3-one, lanost-7-en-3 β -ol, cycloartanol, lupeol and 24-methylenecycloartanol (Table 1).

Frs 9-12 were combined and evaporated. The residue (7 mg) was also acetylated with Ac_2O -pyridine and the acetate mixture was determined by GC and GC-MS. 4 α , 14 α -Dimethylcholest-8-en-3 β -ol, 4 α -methylcholest-7-en-3 β -ol and 31-norcycloartanol were identified (Table 1). The dried roots (500 mg) of *D. cinnabari* were successively extracted with *n*-hexane and CH_2Cl_2 . The *n*-hexane extract was evaporated to dryness *in vacuo* and the residue (2.6 g) was chromatographed on silica gel (Merck 60, 0.063-0.20 mm), eluting with gradient of *n*-hexane-EtOAc mixture. Elution with *n*-hexane-EtOAc

*Author to whom correspondence should be addressed.

Table 1. Retention time of sterols and triterpenoids in the resin of *D. cinnabari*

Compound*	RR _t **
Cholest-4-en-3-one	1.89
4 α ,14 α -Dimethylcholest-8-en-3 β -ol	2.26
4 α -Methylcholest-7-en-3 β -ol	2.45
31-Norcloartanol	2.54
Lanost-7-en-3 β -ol	2.85
Cycloartanol	2.93
Lupeol	3.14
24-Methylenecycloartanol	3.58

*Determined as acetate.

**Relative retention time (RR_t) with respect to 5 α -cholestane.

Table 2. Phytosterol composition in roots of *D. cinnabari*

Phytosterol*	RR _t **	Composition
Cholesterol	1.99	0.6
Campesterol	2.46	0.5
Stigmasterol	2.62	40.0
Stigmast-22-en-3 β -ol	2.68	2.0
Sitosterol	2.95	54.0
Stigmastanol	3.01	2.9

*Determined as acetate.

**Relative retention time (RR_t) with respect to 5 α -cholestane.

(19:1) gave lupeol (1.2 g). Elution with *n*-hexane-EtOAc (9:1) afforded the phytosterol fraction, which was acetylated with Ac₂O-pyridine and examined by GC and GC-MS (Table 2). From the CH₂Cl₂ extract (4.2 g) on silica gel chromatography, eluting with *n*-hexane-EtOAc (8:2) betulin (940 mg) was isolated.

Capillary gas chromatography. Carlo Erba MEGA 5160; column PB-1 (Werner Günther Analysentechnik, 50 m × 0.32 mm; 0.25 film thickness); inj. temp. 225°; column temp. 270° (isothermal); detection FID (temp. 290°); carrier gas N₂, flow rate 1.5 ml min⁻¹, split injection (split ratio 1:20).

GC-MS. MD 800 (Fisons Instruments); EI (70 ev); column DB-1 (15 m × 0.25 mm; 0.25 μ m film thickness), inj. temp. 250°, temp. program: 170° for 1 min then elevated to 270° within 25 grd min⁻¹, then raised to 290° at a rate of 2 grd min⁻¹; carrier gas He, flow rate 0.8 ml min⁻¹.

Cholest-4-en-3-one. MS *m/z* (rel. int.): 384 [M]⁺ (33), 369 (13), 342 (22), 327 (11), 299 (14), 272 (13), 261 (38), 260 (33), 229 (77), 187 (15), 161 (10), 149 (24), 147 (31), 135 (25), 124 (100), 107 (24), 91 (22).

4 α ,14 α -Dimethylcholest-8-en-3 β -yl acetate. MS *m/z* (rel. int.): 456 [M]⁺ (13), 442 (33), 441 (86), 397 (3), 382 (17), 381 (92), 327 (17), 301 (5), 287 (18), 273 (23), 242 (20), 229 (28), 227 (33), 215 (39), 201 (44), 173 (44), 161 (55), 159 (67), 121 (68), 119 (81), 105 (95), 95 (100), 69 (76).

4 α -Methylcholest-7-en-3 β -yl acetate. MS *m/z* (rel. int.): 442 [M]⁺ (77), 427 (16), 382 (10), 367 (20), 329 (8), 287 (11),

270 (21), 269 (100), 243 (31), 227 (68), 187 (13), 173 (23), 161 (41), 147 (33), 119 (33), 105 (66), 95 (78).

31-Norcloartanyl acetate. MS *m/z* (rel. int.): 456 [M]⁺ (2), 442 (5), 397 (8), 396 (32), 381 (43), 343 (6), 341 (11), 288 (11), 283 (25), 227 (11), 207 (17), 189 (24), 175 (41), 147 (44), 133 (44), 121 (50), 109 (55), 107 (72), 95 (100).

Lanost-7-en-3 β -yl acetate. MS *m/z* (rel. int.): 470 [M]⁺ (10), 456 (20), 455 (60), 412 (7), 397 (7), 396 (31), 395 (100), 370 (8), 341 (5), 327 (4), 289 (9), 273 (10), 229 (22), 207 (14), 175 (20), 161 (20), 147 (18), 124 (17).

Cycloartanyl acetate. MS *m/z* (rel. int.): 470 [M]⁺ (10), 455 (43), 395 (74), 341 (3), 301 (4), 255 (7), 95 (100).

24-Methylenecycloartanyl acetate. MS *m/z* (rel. int.): 482 [M]⁺ (9), 422 (32), 407 (43), 379 (40), 353 (17), 300 (28), 297 (20), 285 (15), 203 (41), 147 (61), 95 (100).

Stigmast-22-en-3 β -yl acetate. MS *m/z* (rel. int.): 456 [M]⁺ (57), 441 (6), 353 (49), 344 (49), 329 (17), 315 (60), 302 (16), 269 (15), 257 (100), 229 (8), 215 (23), 163 (33), 123 (50).

Lupeolyl acetate. MS *m/z* (rel. int.): 468 [M]⁺ (23), 453 (13), 408 (79), 393 (11), 357 (10), 341 (6), 297 (8), 249 (15), 218 (100), 203 (45), 189 (82).

Acknowledgements—The authors are indebted to the Bundesministerium für Forschung und Technologie, Bonn, for financial support as well as Mrs. Ch. Kuhn for GC and GC-MS measurements.

REFERENCES

- Suchy, V., Bobovníky, B., Trojánek, J., Budesinsky, M. and Ubík, K. (1991) in *Progress on Terrestrial and Marine Natural Products of Medicinal and Biological Interest* (Pezzuto, J. M., et al., eds), p. 110. Am. Bot. Council, Austin.
- Masaoud, M., Ripperger, H., Himmelreich, U. and Adam, G. *Phytochemistry*, in press.
- Masaoud, M., Ripperger, H., Porzel, A. and Adam, G. *Phytochemistry*, in press.
- Smith, A. G., Rubinstein, I. and Goad, L. J. (1973) *Biochem. J.* **135**, 443.
- Atallah, A. M. and Nicholas, H. J. (1972) *Steroids* **17**, 611.
- Miettinen, T. A. and Luukkainen, T. (1968) *Acta Chem. Scand.* **22**, 2603.
- Itoh, T., Tami, H., Fukushima, K., Tamura, T. and Matsumoto, T. (1982) *J. Chromatogr.* **234**, 65.
- Sheikh, Y. M. and Djerassi, C. (1974) *Tetrahedron* **30**, 4095.
- Aiello, A., Fattorusso, E., Magno, S. and Menna, M. (1991) *J. Nat. Prod.* **54**, 281.
- Goad, L. J. (1991) in *Methods in Plant Biochemistry*, Vol. 7, Chap. 11, p. 369.
- Sturm, G. and Zilliken, F. (1972) *Planta Med.* **21**, 61.
- Sholichin, M., Yamasaki, K. and Kasai, R. (1980) *Chem. Pharm. Bull.* **28**, 1006.
- Hayeh, E. W. H., Jordis, U., Moche, W. and Sauter, F. (1989) *Phytochemistry* **28**, 2229.
- Missé, N. L. A. and Goad, L. J. (1984) *Phytochemistry* **23**, 73.