

EPOXYCONIFERYL ALCOHOL FROM *FRAXINUS OXYCARPA* BARK

IVANKA KOSTOVA,* DRAGOMIR DINCHEV, BOZHANA MIKOVA and TANYA IOSSIFOVA

Institute of Organic Chemistry, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria

(Received 6 May 1994)

Key Word Index—*Fraxinus oxycarpa*; Oleaceae; bark; hydroxycoumarins; secoiridoids; phenolic compounds; epoxyconiferyl alcohol.

Abstract—The new compound, epoxyconiferyl alcohol, has been isolated from the bark of *Fraxinus oxycarpa*, along with the known hydroxycoumarins, esculin, fraxin, esculetin, isoscopoletin, fraxetin, and the secoiridoids, ligstroside and 10-hydroxyligstroside.

INTRODUCTION

In continuation of our phytochemical investigations on *Fraxinus* species [1, 2], we examined the bark of *F. oxycarpa* Willd., growing in Bulgaria. Previous works on this plant describe the presence of some phenolic acids and the hydroxycoumarins esculetin, isofraxinol, esculin, fraxin and cichoriin [3, 4]. The present study has resulted in the isolation of a new phenolic compound epoxyconiferyl alcohol (**1**) and seven known substances. This report deals with the isolation and structural elucidation of the new compound.

RESULTS AND DISCUSSION

The DSE and ethanol extracts of the bark of *F. oxycarpa* were fractionated and worked-up as described in the Experimental, to give epoxyconiferyl alcohol (**1**), together with the coumarins esculin, fraxin, esculetin, fraxetin and isoscopoletin, as well as the secoiridoid glucosides, ligstroside and 10-hydroxyligstroside. This is the first report of the occurrence of the last five compounds in *F. oxycarpa*.

Epoxyconiferyl alcohol (**1**), $C_{10}H_8O_4$, was obtained as an amorphous powder. It showed UV maxima at 281 nm in ethanol and IR bands at 1237, 823 and 752 cm^{-1} . Its ^1H NMR spectrum (Table 1) revealed the typical pattern of a 1,3,4-trisubstituted benzene ring at $\delta 6.90$ (*d*, $J = 1.7\text{ Hz}$), 6.89 (*d*, $J = 8.2\text{ Hz}$) and 6.82 (*dd*, $J = 1.7$ and 8.2 Hz), one aromatic OMe at $\delta 3.91$ (*s*, 3H) and one phenolic OH at $\delta 5.59$ (*bs*, $D_2\text{O}$ -exchangeable). Oxirane protons appeared as a multiplet at $\delta 3.10$ ($H-2'$) and a

doublet at $\delta 4.74$ ($J = 4.2\text{ Hz}$, $H-3'$). The observed coupling constant of 4.2 Hz suggested a *cis*-disubstituted epoxide [5]. ^1H decoupling showed that the remaining two signals (*dd*) at $\delta 3.88$ and 4.25 belong to a methylene group attached to C-2'. The position of the substituents in the aromatic ring and the *cis*-configuration of the oxirane protons were confirmed by NOE experiments (Fig. 1).

The ^{13}C NMR data (Table 1) were in agreement with the structure of **1** as epoxyconiferyl alcohol.

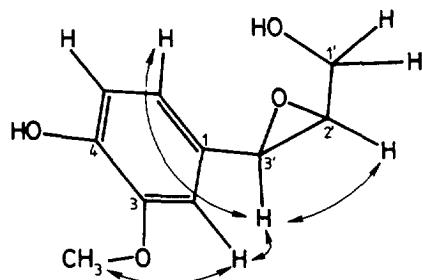
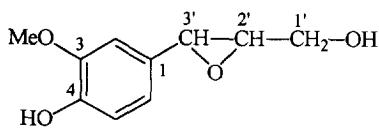



Fig. 1. Most important enhancements of signals in homonuclear ^1H NOE spectra of **1**. Arrows (\curvearrowright) designate mutual effect between the indicated protons.

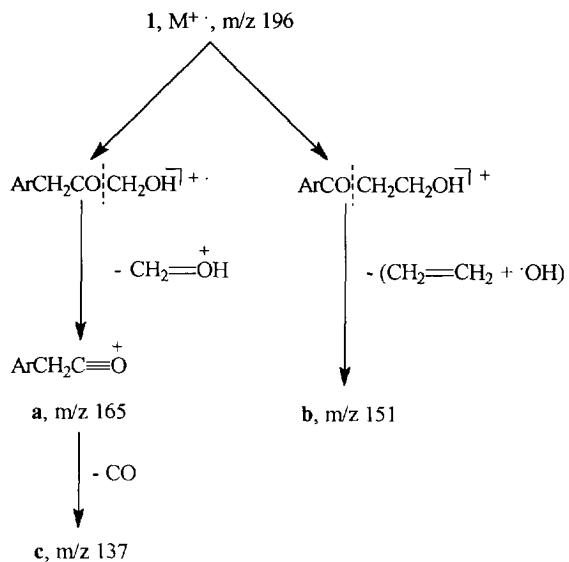
Table 1. ^1H and ^{13}C NMR spectral data of epoxyconiferyl alcohol (**1**) in CDCl_3

Position	δH (J in Hz)	δC
1	—	133.0 <i>s</i>
2	6.90 <i>d</i> (1.7)	108.6 <i>d</i>
3	—	146.7 <i>s</i>
4	5.59 <i>bs</i> (OH, $D_2\text{O}$ -exchangeable)	145.3 <i>s</i>
5	6.89 <i>d</i> (8.2)	114.3 <i>d</i>
6	6.82 <i>dd</i> (8.2, 1.7)	119.0 <i>d</i>
1'	3.88 <i>dd</i> (9.0, 3.7) 4.25 <i>dd</i> (9.0, 7.0)	71.7 <i>t</i>
2'	3.10 <i>m</i>	54.2 <i>d</i>
3'	4.74 <i>d</i> (4.2)	85.9 <i>d</i>
OMe	3.91 <i>s</i>	56.0 <i>q</i>

*Author to whom correspondence should be addressed.

The mass spectral behaviour of **1** provided further evidence for the proposed structure. The 70 eV mass spectrum exhibited a $[M]^+$ at m/z 196 and the presence of characteristic ions **a** (m/z 165), **b** (m/z 151) and **c** (m/z 137). These ions could be attributed to the specific rearrangement of the epoxy ring [6] with formation of the corresponding carbonyl compounds of the type $\text{ArCH}_2\text{COCH}_2\text{OH}$ and $\text{ArCOCH}_2\text{CH}_2\text{OH}$, followed by cleavage α to the carbonyl group (Scheme 1).

EXPERIMENTAL


General. ^1H and ^{13}C NMR spectra [δ (ppm), J (Hz)] were obtained at 250 and 63 MHz, respectively, using TMS as int. standard. NOE experiments were performed using standard Bruker software. MS: 70 eV. TLC: aluminium sheets, silica gel 60 F_{254} (Merck), bands detected under UV light, after exposure to I_2 vapour or by spraying with H_2SO_4 and heating. Prep. TLC: 20 \times 20 cm plates coated with 1 mm of silica gel PF_{254} (Merck), bands detected in UV light and after exposure to I_2 vapour. Liquid vacuum chromatography (LVC): silica gel LS 5–40 μ (Chemapol). TLC solvent systems: Et_2O –toluene (2:1), satd with 10% HOAc (A), Et_2O –toluene–EtOAc (2:1:1) (B), Et_2O –toluene–EtOAc (9:4:3) (C) and MeOH– CHCl_3 – HCO_2H (5:0.8:0.2) (D).

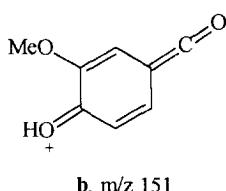
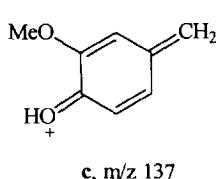
Plant material. A sample of *F. oxyacarpa* Willd. bark, collected in 1990 from the region of Kresna, South Bulgaria, was studied. A voucher specimen is deposited in the herbarium of the Institute of Botany, BAS, Sofia.

Isolation of compounds. Dried and well-ground bark (1.6 kg) was successively extracted with petrol (3 \times 3 l), DXE (3 \times 2.2 l) and EtOH (3 \times 2 l) at room temp.

The DXE extract (8.2 g) was subjected to LVC over 80 g silica gel (petrol– CHCl_3 , 1:1, 1:2 and 1:3). The frs. eluted with petrol– CHCl_3 (1:2) and (1:3) on concn under red. pres. afforded residues R-1 (0.25 g) and R-2 (0.10 g), respectively. R-1 was chromatographed on a silica gel column with petrol– CHCl_3 mixts of increasing polarity. The frs obtained with petrol– CHCl_3 (1.5:1) were subjected to prep. TLC (C, multiple development) to give **1** (0.01 g). Prep. TLC (C) of 0.02 g of R-1 gave isoscopoletin (0.003 g). Prep. TLC of R-2 in the same solvent system yielded esculetin (0.003 g) and fraxetin (0.005 g)..

A part of the EtOH extract (5.8 g) was subjected to LVC over 70 g silica gel using DXE–MeOH mixts of

Scheme 1. Mass spectral cleavage of **1**.



increasing polarity (30:1, 8:1 and 5:1). Frs eluted with DXE–MeOH (8:1) and DXE–MeOH (5:1) on concn gave residues R-3 (0.65 g) and R-4 (0.27 g). R-3 on CC over silica gel and elution with CHCl_3 –MeOH (8:1) afforded pure ligstroside (0.094 g). R-4 on CC over silica gel and prep. TLC (D) of the frs eluted with CHCl_3 –MeOH (5:1) gave esculin (0.005 g) and fraxin (0.005 g).

Epoxyconiferyl alcohol (1). Powder. $[\alpha]_D^{20} + 51.56^\circ$ (CHCl_3 ; c 0.4325). UV $\lambda_{\text{max}}^{\text{EtOH}}$ nm ($\log \epsilon$): 281 (3.46). IR $\nu_{\text{max}}^{\text{KBr}}$ cm^{-1} : 3420, 3007, 1604, 1517, 1450, 1237, 823, 752. EIMS m/z (rel. int.): 196 [$M]^+$ (8), 165 (a, 8), 151 (b, 100), 137 (c, 38). ^1H and ^{13}C NMR: Table 1.

Acknowledgements—The partial financial support of this work by the National Foundation 'Scientific Investigations' (Project X-45) is gratefully acknowledged.

REFERENCES

1. Kostova, I. (1992) *Planta Med.* **58**, 484.
2. Iossifova, T., Mikhova, B. and Kostova, I. (1993) *Phytochemistry* **34**, 1373.
3. Artemeva, M. V., Karryev, M. O. and Nikonov, G. K. (1979) *Rastit. Resur.* **11**, 368.
4. Grujic-Vasic, J. and Ramic, S. (1968) *Lek. Sirovine* **6**, 25.
5. Aycard, J., Kini, F., Kam, B., Gaydou, E. and Faure, R. (1993) *J. Nat. Prod.* **56**, 1171.
6. Porter, Q. N. and Baldas, J. (1971) in *Mass Spectrometry of Heterocyclic Compounds* (Weissberger, A. and Taylor, E. G., eds), pp. 18–19. Wiley-Interscience, New York.

