

A COUMARIN GLYCOSIDE FROM *LONICERA GRACILIPES* VAR. *GLANDULOSA**

NORIKO MATSUDA and MASAO KIKUCHI†

Department of 2nd Analytical Chemistry, Tohoku College of Pharmacy, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi 981, Japan

(Received 8 July 1994)

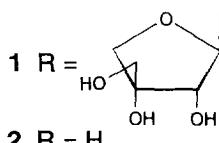
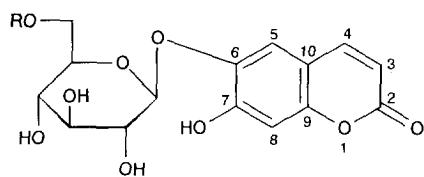
Key Word Index—*Lonicera gracilipes* var. *glandulosa*; Caprifoliaceae; coumarin glycoside; aesculetin-6-*O*- β -D-apiosfuranosyl-(1 \rightarrow 6)-*O*- β -D-glucopyranoside.

Abstract—A new coumarin glycoside, aesculetin-6-*O*- β -D-apiosfuranosyl-(1 \rightarrow 6)-*O*- β -D-glucopyranoside, was isolated from the leaves of *Lonicera gracilipes* var. *glandulosa* and its structure determined by chemical and physicochemical evidence.

INTRODUCTION

As part of our phytochemical research on plants in the genus *Lonicera*, we have investigated *Lonicera gracilipes* var. *glandulosa*. This species, a deciduous shrub, is widely distributed in Japan. In this paper, we report on the characterization of a new coumarin glycoside from the leaves of this plant.

RESULTS AND DISCUSSION



Compound **1** was isolated as an amorphous powder, whose M_r was confirmed from $[M + Na]^+$ at m/z 495 in the positive ion FAB-mass spectrum. The UV spectrum showed characteristic coumarin absorption (described in the Experimental). Hydrolysis of **1** with 5% HCl yielded aesculetin, D-glucose and D-apiose. The 1H and ^{13}C NMR spectra showed the presence of the coumarin skeleton [δ 6.17 (1H, d, J = 9.5 Hz, H-3), 7.89 (1H, d, J = 9.5 Hz, H-4) and 112.0 (C-3), 146.4 (C-4)], glucosyl and apiosyl moieties. The two singlet proton signals, δ 6.77 and 7.39, showed that two substituents were at C-6 and C-7 of the B-ring. Chemical shifts in the ^{13}C NMR spectrum of **1** were compared with aesculin (aesculetin-6-*O*- β -D-glucopyranoside) (**2**) and the apiosyl-(1 \rightarrow 6)-glucosyl moiety of osmantolide (methoxyhydroquinone-4-*O*- β -D-apiosfuranosyl-(1 \rightarrow 6)-*O*- β -D-glucopyranoside, [2]) (Table 1). In the NOESY spectrum of **1**, cross-peaks were observed between H-4 and the δ 7.39 signal, and between the glucosyl anomeric proton at δ 4.81 and the same signal, indicating that the apiosyl-(1 \rightarrow 6)-glucosyl moiety was attached to the C-6 hydroxyl group. Thus, the structure of **1** was determined to be aesculetin-6-*O*- β -D-apiosfuranosyl-(1 \rightarrow 6)-*O*- β -D-glucopyranoside.

EXPERIMENTAL

1H and ^{13}C NMR spectra were recorded at 400 and 100 MHz, respectively. Chemical shifts are given on the δ (ppm) scale with TMS as int. standard. Prep. HPLC was carried out using a ODS-120A (7.8 mm i.d. \times 30 cm) column with UV detector. GC was carried out using a 3% SE-52 Chromosorb W(AW) (60-80 mesh, 3 mm i.d. \times 2 m) column with FID.

Extraction and isolation. Fr. leaves of *L. gracilipes* var. *glandulosa* (0.2 kg), collected in October 1990, in Sendai, Japan, were extracted with MeOH at room temp. for 1 month. The MeOH extract was concd under red. pres. and the residue suspended in a small excess of H_2O . This suspension was successively extracted with $CHCl_3$, Et_2O , $EtOAc$, *n*-BuOH and H_2O . The *n*-BuOH-soluble fr. was concd. under red. pres. to afford a residue (15.2 g) which was chromatographed on a silica gel column ($CHCl_3$ -MeOH- H_2O , 30:10:1) and a Sephadex LH-20 column (MeOH- H_2O , 1:1), and then subjected to prep. HPLC (MeOH- H_2O , 3:7) to give **1** (3 mg).

*Aesculetin-6-*O*- β -D-apiosfuranosyl-(1 \rightarrow 6)-*O*- β -D-glucopyranoside* (**1**). Amorphous powder. $[\alpha]_D^{20} = 68.2^\circ$ (MeOH; c 0.1). UV λ_{max}^{MeOH} nm (log ϵ): 221 sh (3.94), 250sh

*Part 4 in the series 'Studies on the constituents of *Lonicera* species'. For Part 3, see ref. [1].

†Author to whom correspondence should be addressed.

Table 1. ^{13}C NMR spectral data of **1** (in CD_3OD)

C	1	Aesculin	β -D-Apiosyl (1 \rightarrow 6)- <i>O</i> - β -D-glucosyl*
2	164.1	163.7	—
3	112.0	113.1	—
4	146.4	145.9	—
5	116.4	116.9	—
6	153.0	153.4	—
7	145.1	144.4	—
8	104.7	104.6	—
9	153.0	152.6	—
10	112.0	112.8	—
Glc-1	104.2	104.4	103.8
Glc-2	74.9	74.8	75.0
Glc-3	78.0	78.5	78.1
Glc-4	71.6	71.4	71.7
Glc-5	77.3	77.7	77.0
Glc-6	68.8	62.6	68.8
Api-1	110.9	—	111.0
Api-2	77.5	—	78.0
Api-3	80.5	—	80.6
Api-4	74.8	—	75.0
Api-5	65.3	—	65.6

*Sugar moiety of osmantolide.

(3.64), 290sh (3.53), 330 (3.70), 386sh (3.15). IR $\nu_{\text{max}}^{\text{KBr}}$ cm^{-1} : 3388, 1700 sh, 1689, 1612, 1572, 1510. FAB-MS m/z 495 [$\text{M} + \text{Na}$] $^+$. ^1H NMR (CD_3OD): δ 4.81 (1H, *d*, *J* = 7.7 Hz, Glc-H-1), δ 5.01 (1H, *d*, *J* = 2.6 Hz, Api-H-1), δ 6.17 (1H, *d*, *J* = 9.5 Hz, H-3), 6.77 (1H, *s*, H-8), 7.39 (1H, *s*, H-5), 7.89 (1H, *d*, *J* = 9.5 Hz, H-4). ^{13}C NMR: Table 1.

Acid hydrolysis. Hydrolysis of **1** with 5% HCl yielded aesculetin, D-glucose and D-apiose. Aesculetin was identified by TLC and the two sugars by GC after derivatization with TMS.

Acknowledgement—The authors are grateful to Dr K. Hisamichi (Tohoku Coll. of Pharm.) for the measurements of NMR spectra.

REFERENCES

1. Machida, K. and Kikuchi, M. (1995) *Phytochemistry* in press.
2. Sugiyama, M. and Kikuchi, M. (1991) *Phytochemistry* **30**, 3147.