

THREE ACYCLIC BIS-PHENYLPROPANE LIGNANAMIDES FROM FRUITS OF *CANNABIS SATIVA**[†]

IWAO SAKAKIBARA, YUKINOBU IKEYA, KOJI HAYASHI, MINORU OKADA and MASAO MARUNO

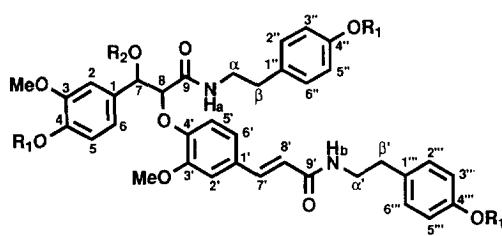
Tsumura Central Research Laboratories, 3586 Yoshiwara, Ami-machi, Inashiki-gun, Ibaraki, 300-11, Japan

(Received 19 July 1994)

Key Word Index—*Cannabis sativa*; Cannabidaceae; cannabisin E; cannabisin F; cannabisin G.

Abstract—Three new acyclic bis-phenylpropane lignanamides, named cannabisin E, F and G were isolated from the fruits of *Cannabis sativa*. Their structures have been elucidated based on spectral and chemical evidence.

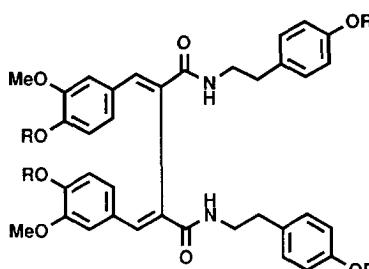
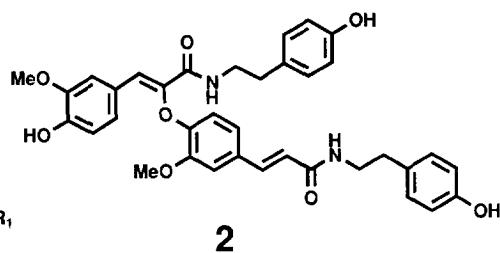
INTRODUCTION


In the course of our investigation, we reported the isolation of cannabisin A–D from the fruits of *C. sativa*. In a continuation of this study, we now report the isolation and identification of three new acyclic bis-phenylpropane lignanamides from the same material.

RESULTS AND DISCUSSION

From the *n*-BuOH soluble fraction of the aqueous ethanol extract, cannabisin E (1), cannabisin F (2) and cannabisin G (3) were obtained. Cannabisin E (1) was obtained as an amorphous powder. The IR spectrum showed absorption bands for a hydroxyl group (3356 cm^{-1}), an amide group (1658 cm^{-1}) and an aro-

matic ring (1614 and 1514 cm^{-1}). The molecular formula of 1 was determined to be $\text{C}_{36}\text{H}_{38}\text{N}_2\text{O}_9$ by high-resolution FAB mass spectrometry (m/z : 643.2234, $[\text{M} + \text{H}]^+$). Acetylation of 1 gave tetraacetate (1a) (δ 2.12, 2.27, 2.29 and 2.30) (see Table 1) and methylation of 1 gave pentamethylether (1b) (1 has originally two methoxyls). Thus 1 has three phenolic hydroxyls and an alcohol in its structure.



The NMR spectrum of 1 exhibited two tyramine moieties and two ABX-type coupled aromatic proton signals, along with $-\text{CH}(\text{OH})-\text{CH}-$ moiety were observed (see Table 1). In the HMBC spectrum of 1, there were cross peaks between benzylic methine proton signal at H-7 (δ 5.17) and C-2 and C-6 aromatic carbon signals (δ 111.6 and 120.4), respectively. A cross peak between

1 $\text{R}_1 \text{R}_2 = \text{H}$

1a $\text{R}_1 \text{R}_2 = \text{Ac}$

1b $\text{R}_1 = \text{Me} \text{ R}_2 = \text{H}$

*Part 3 in the Series [1, 2].

Table 1. ^1H NMR spectral data of 1–3, 1a, 1b and 3a (500 MHz, acetone- d_6)^a

H	1	2	3	1a [†]	1b [†]	3a [†]
2	7.16 (d, 2.0)	7.27 (d, 2.0)	7.28 (d, 2.1)	6.90 (d, 1.9)	7.02 (d, 2.0)	7.14 (d, 2.0)
5	6.78 (d, 8.1)	6.75 (d, 8.4)	6.83 (d, 8.4)	7.01 (d, 8.5)	6.28 (d, 8.4)	6.99 (d, 8.3)
6	6.94 (dd, 8.1, 2.0)	7.03 (dd, 8.4, 2.0)	7.08 (dd, 8.4, 2.1)	7.06 (dd, 8.5, 1.9)	6.90 (dd, 8.4, 2.0)	7.09 (dd, 8.3, 2.0)
7	5.17 (brdd, 6.7, 3.5)	7.27 (s)	7.89 (s)	6.37 (d, 2.5)	5.18 (d, 3.1)	8.00 (s)
8	4.59 (d, 3.5)			4.61 (d, 2.5)	4.54 (d, 3.1)	
2'	7.14 (d, 2.0)	7.35 (d, 2.0)	7.28 (d, 2.1)	7.09 (d, 1.9)	7.11 (d, 2.0)	7.14 (d, 2.0)
5'	6.53 (d, 8.4)	6.78 (d, 8.4)	6.83 (d, 8.4)	6.02 (d, 8.5)	6.89 (d, 8.4)	6.99 (d, 8.3)
6'	6.96 (dd, 8.4, 2.0)	7.14 (dd, 8.4, 2.0)	7.08 (dd, 8.4, 2.1)	6.87 (dd, 8.5, 1.9)	6.98 (dd, 8.4, 2.0)	7.09 (dd, 8.3, 2.0)
7'	7.42 (d, 15.6)	7.46 (d, 15.7)	7.89 (s)	7.47 (d, 15.5)	7.39 (d, 15.7)	8.00 (s)
8'	6.53 (d, 15.6)	6.57 (d, 15.7)		6.19 (d, 15.5)	6.38 (d, 15.7)	
NH _a	7.50 (t, 6.0)	7.22 (t, 6.1)	7.11 (brt, 6.5)	7.62 (t, 6.1)	6.10 (t, 6.1)	
NH _b	7.21 (t, 6.0)	7.25 (t, 6.1)	7.11 (brt, 6.5)	5.67 (t, 6.1)	6.10 (t, 6.1)	
H- α	3.39 (2H, dd, 14.3, 7.3, 6.0)	3.46 (2H, dd, 13.0, 6.0)	3.26 (2H, dd, 13.5, 8.3, 6.5, 2.0)	3.47 (dt, 14.0, 6.8)	3.49 (dd, 13.4, 6.7)	3.33 (2H, dt, 13.8, 6.9)
H- α'	3.49 (2H, dd, 13.1, 7.3, 6.0)	3.49 (2H, dd, 13.0, 6.0)	3.49 (2H, dd, 13.5, 8.3, 6.5, 2.0)	3.55 (dt, 14.0, 6.8)	3.36 (dd, 13.4, 7.0)	
H- β	2.63 (2H, dt, 13.4, 7.3)	2.65 (2H, t, 7.1)	2.42 (2H, dd, 13.5, 8.3, 2.0)	2.71 (dt, 14.0, 6.8)	2.65 (dt, 13.4, 6.7)	2.51 (2H, dt, 13.8, 6.9)
H- β'	2.75 (2H, t, 7.3)	2.75 (2H, t, 7.1)	2.53 (2H, dd, 13.5, 8.3, 2.0)	2.81 (dt, 14.0, 6.8)	2.67 (dt, 13.4, 6.7)	2.63 (2H, dt, 13.8, 6.9)
2'', 6''	6.93 (d, 8.6)	6.90 (d, 8.6)	6.84 (d, 8.6)	7.07 (d, 8.6)	6.95 (d, 8.8)	6.95 (d, 8.6)
3'', 6''	7.05 (d, 8.6)	7.06 (d, 8.6)	6.84 (d, 8.6)	7.21 (d, 8.6)	7.12 (d, 8.8)	6.95 (d, 8.6)
3'', 5''	6.70 (d, 8.6)	6.68 (d, 8.6)	6.68 (d, 8.6)	6.91 (d, 8.6)	6.69 (d, 8.8)	6.90 (d, 8.6)
3'', 6''	6.75 (d, 8.6)	6.75 (d, 8.6)	6.68 (d, 8.6)	7.03 (d, 8.6)	6.82 (d, 8.8)	6.90 (d, 8.6)
OMe	3.80 (2-OMe)	3.94 (3-OMe)	3.74 (3'-OMe)	3.64 (3-OMe)	3.80 (3-OMe)	3.82 (3'-OMe)
	3.82 (3-OMe)	3.69 (3'-OMe)	3.78 (3-OMe)	3.74 (4'''-OMe)	3.74 (4'''-OMe)	
Ac				2.12 (7-OAc)	3.74 (4-OAc)	2.27 (4'', 4'''-OAc)
				2.27, 2.29, 2.30 (4,4'', 4'''-OAc)	3.70 (4''-OMe)	2.28 (4,4'-OAc)

^aCoupling constants (Hz) were given in parentheses. Assignments were based on the results of COLOC, HMBC, HMQC, COSY and NOESY spectral data.

[†]Measured in CDCl_3 -MeOH (1:1).

the H-8 proton signal at δ 4.59 and quaternary aromatic carbon signal was assignable to C-4' (δ 149.8). On the other hand, in the NOESY spectrum of **1**, there was a cross peak between H-5' (δ 6.53) and the H-8 proton signal. These data supported the presence of an ether function connecting between the C-4' and C-8. Thus **1** is a surinamensis-type lignan derivative [3], that has a 1-phenyl-2-phenoxyethanol moiety in its structure.

Furthermore, tyramine moieties were assigned on the basis of long-range couplings (HMBC experiment) between the NH proton signal at δ 7.21 and carbonylcarbon signals at δ 166.2, δ 7.50 and δ 169.9; those carbonylcarbon

signals were assignable to C-9' and the C-9, respectively (see Tables 1 and 2). The small $J_{7,8}$ values of **1**, **1a** and **1b** [**1** (3.5 Hz), **1a** (2.5 Hz) and **1b** (3.1 Hz)], were indicative of *erythro* derivatives [4-7]. These results led us to conclude the structure of cannabisin E to be **1** (see structure).

Cannabisin F (**2**) was obtained as an amorphous powder. The ^1H NMR spectrum was similar to that of **1**, except for the presence of a conjugated olefinic proton (δ 7.27) in **2**, instead of $-\text{CH}(\text{OH})-\text{CH}-$ function in **1**, and its molecular formula $\text{C}_{36}\text{H}_{36}\text{N}_2\text{O}_8$ showed **2** was the dehydrate of **1**. Revealing the presence of an olefine moiety in **2**, **1** was subjected to a dehydration reaction

Table 2. ^{13}C NMR spectral data of **1-3**, **1a**, **1b** and **3a** (125 MHz, acetone- d_6)*

C	1	2	3	1a †	1b ‡	3a †
1	133.7	125.5	127.8	135.8	134.4	132.6
2	111.6	112.3	113.3	111.4	111.3	113.4
3	148.1	148.3	149.2	151.3	149.6	151.3
4	146.9	147.1	148.3	139.9	149.5	141.3
5	115.2	115.1	116.0	122.9	111.8	123.4
6	120.4	121.5	125.9	119.5	119.9	123.5
7	74.4	123.7	140.5	74.5	74.3	140.1
8	86.5	142.3	127.9	85.4	86.9	128.4
9	169.9	166.1	166.2	168.0	171.2	164.1
1'	131.3	131.7	127.8	130.7	131.1	132.6
2'	112.0	113.6	113.3	111.1	112.0	113.4
3'	151.2	150.2	149.2	149.9	150.8	151.3
4'	149.8	148.8	148.3	148.6	149.8	141.3
5'	117.7	115.9	116.0	117.6	117.4	123.4
6'	121.8	125.5	125.9	121.5	120.5	123.5
7'	139.7	139.6	140.5	140.2	140.8	140.1
8'	121.8	122.0	127.9	120.0	122.2	128.4
9'	166.2	163.3	166.2	165.8	168.2	164.1
α	41.5	41.8	42.6	40.6	41.6	41.3
α'	41.9	42.0	42.6	40.7	42.1	41.3
β	35.5	35.5	35.5	35.0	35.1	34.8
β'	35.7	35.7	35.5	35.0	35.4	34.8
1''	130.8	130.8	130.9	136.4	131.6	135.9
2''	130.5	130.5	130.4	129.6	130.4	129.5
3''	116.1	116.1	116.0	121.6	114.6	121.7
4''	156.7	156.7	156.6	149.3	159.1	149.3
5''	116.1	116.1	116.0	121.6	114.6	121.7
6''	130.5	130.5	130.4	129.6	130.4	129.5
1'''	131.1	131.1	130.9	136.5	132.0	135.9
2'''	130.5	130.5	130.4	129.8	130.4	129.5
3'''	116.1	116.1	116.0	121.8	114.6	121.7
4'''	156.7	156.7	156.6	149.3	159.2	149.3
5'''	116.1	116.1	116.0	121.8	114.6	121.7
6'''	130.5	130.5	130.4	129.8	130.4	129.5
Methoxyl	56.2 (C-3) 56.3 (C-3')	56.0 (C-3') 56.2 (C-3)	56.1 (C-3) 56.1 (C-3')	55.6 (C-3) 56.0 (C-3')	55.6 (C-4) 56.2 (C-3) 56.2 (C-4'') 56.3 (C-3')	55.8 (C-3) 55.8 (C-3') 20.6 168.8 20.9 169.3 21.1 169.6 21.1 169.7 20.6 168.5 (C-4'') 21.1 169.4 (C-4'', 4'')
Acetoxy						

*All assignments were based on COLOC, HMBC and HMQC experiments.

†Measured in CDCl_3 .

‡Measured in $\text{CDCl}_3-\text{MeOH}$ (1:1).

with *p*-toluenesulphonic acid in THF, giving a dehydrant which was identified with cannabisin F. In the COLOC spectrum of **2**, the conjugated olefinic proton (δ 7.27) has two cross peaks with C-2 (δ 112.3) and C-6 (δ 121.5), respectively. These results showed that the olefine moiety was located at the C-7 and C-8 position. From the above observations, the structure of cannabisin F was concluded as **2** (see structure).

Cannabisin G (**3**) was obtained as an amorphous powder. The ^1H NMR spectrum of **3** was similar to that of *N*-*trans*-feruloyltyramine, except for the presence of a singlet olefinic proton signal (δ 7.89), instead of trans olefine proton signals in *N*-*trans*-feruloyltyramine. The molecular formula of **3** ($\text{C}_{36}\text{H}_{38}\text{N}_2\text{O}_8$) showed that **3** was a dimer of *N*-*trans*-feruloyltyramine. Acetylation of **3** gave tetraacetate **3a** (FAB-MS m/z : 793 [$\text{M} + \text{H}]^+$), supporting its dimeric structure. In the COLOC spectrum of **3a**, there were cross peaks between this singlet olefinic proton signal (δ 8.00, 2H) and an aromatic methine carbon signal (δ 113.4, C-2 and C-2'), another aromatic methine carbon signal (δ 123.4, C-6 and C-6') and a carbonylcarbon signal (δ 164.1), respectively. These data suggested that this singlet signal was assignable to the H-7 and the H-7'. Therefore these feruloyl-tyramine units were connected between the C-8 and the C-8' positions. From these findings, cannabisin G has a biphenylbutadiene moiety and its structure was elucidated as **3** (see structure).

All these cannabisins were presumed to be synthesized during the process of oxidative coupling according to the biosynthesis of lignan [8–10]. *N*-*trans*-feruloyltyramine was subjected to a catalytic condensation with aqueous FeCl_3 solution and acetone, affording cannabisin E, F and G as minor products, along with cannabisin D and grossamide as major products. Cannabisin E, F and G are the first naturally occurring acyclic *bis*-phenylpropane lignanamides.

EXPERIMENTAL

Mps: uncorr; ^1H and ^{13}C NMR were measured at 500 MHz and 125 MHz, respectively, with TMS as int. standard; 2D NMR: 500 MHz under the same conditions; EI-MS: 70 eV; prep. TLC: prepak CIG Si-10 column (silica gel, 2.2 cm i.d. \times 30 cm); prep. HPLC: YMC R-354 (ODS, 5 cm i.d. \times 50 cm); CC: Silica gel 60 (70–230 mesh). Acetylation was conducted with Ac_2O and pyridine. Methylation was conducted by methyl iodide with K_2CO_3 and Me_2CO . Plant material was purchased from a Japanese market and a voucher specimen stored in the Herbarium stock room of our Laboratory.

Extraction and isolation. Fruits of *C. sativa* L. (10 kg) were extracted with boiling H_2O –EtOH (1:1) (81 \times 3). The extract was concd to 4 l, which was then extracted with CHCl_3 (20 l), and *n*-BuOH (20 l), successively. The *n*-BuOH extract was concd to dryness to give a brown mass (239 g), which was chromatographed on Diaion HP-20 eluted with H_2O (40 l), followed by MeOH (50 l). The MeOH eluate was concd to give a yellow mass (172 g), which was chromatographed on silica gel, eluted with

CHCl_3 –MeOH [4:1 (2 l)], then purified by prep. HPLC [H_2O –MeCN–MeOH (7:2:2)] to give **1** (120 mg), **2** (45 mg) and **3** (20 mg), respectively.

Cannabisin E (**1**). Amorphous powder. FAB-MS m/z : 643.2631 ($[\text{M} + \text{H}]^+$, calcd for $\text{C}_{36}\text{H}_{39}\text{N}_2\text{O}_9$; 643.2656). IR $\nu_{\text{max}}^{\text{KBr}}$ cm^{-1} : 3356 (OH), 1658 (C=O), 1614, 1514 (benzene ring). UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm (log ϵ): 226 (4.16), 283 (4.43), 313 (4.31). ^1H NMR: see Table 1. ^{13}C NMR: see Table 2.

Cannabisin F (**2**). Amorphous powder. FAB-MS m/z : 625.2532 ($[\text{M} + \text{H}]^+$, calcd for $\text{C}_{36}\text{H}_{37}\text{N}_2\text{O}_8$; 625.2550). IR $\nu_{\text{max}}^{\text{KBr}}$ cm^{-1} : 3408 (OH), 1658 (C=O), 1614, 1514 (benzene ring). UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm (log ϵ): 287 (4.55), 320 (4.57). ^1H NMR: see Table 1. ^{13}C NMR: see Table 2.

Cannabisin G (**3**). Amorphous powder. FAB-MS m/z : 625.2533 ($[\text{M} + \text{H}]^+$, calcd for $\text{C}_{36}\text{H}_{37}\text{N}_2\text{O}_8$; 625.2550). IR $\nu_{\text{max}}^{\text{KBr}}$ cm^{-1} : 3356 (OH), 1658 (C=O), 1614, 1514 (benzene ring). UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm (log ϵ): 283 (4.48), 316 (4.28). ^1H NMR: see Table 1. ^{13}C NMR: see Table 2.

Cannabisin E trimethyl ether (**1a**). Amorphous powder. FAB-MS m/z : 625.2522 ($[\text{M} + \text{H}]^+$, calcd for $\text{C}_{39}\text{H}_{45}\text{N}_2\text{O}_9$; 685.3125). IR $\nu_{\text{max}}^{\text{KBr}}$ cm^{-1} : 1650, 1614, 1594, 1512. UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm (log ϵ): 225 (4.67), 280 (4.43), 284 (4.45), 314 (4.34). ^1H NMR: see Table 1. ^{13}C NMR: see Table 2.

Cannabisin E tetraacetate (**1b**). Needles mp 123–125°. FAB-MS m/z : 811 ($[\text{M} + \text{H}]^+$). IR $\nu_{\text{max}}^{\text{KBr}}$ cm^{-1} : 1760, 1658, 1606, 1536, 1218. UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm (log ϵ): 282 (4.37), 290 (4.35), 313 (4.29). ^1H NMR: see Table 1. ^{13}C NMR: see Table 2.

Cannabisin G tetramethyl ether (**3a**). Amorphous powder. FAB-MS m/z : 793 ($[\text{M} + \text{H}]^+$). IR $\nu_{\text{max}}^{\text{KBr}}$ cm^{-1} : 1768, 1642, 1600, 1536, 1194. UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm (log ϵ): 283 (4.44), 316 (4.32). ^1H NMR: see Table 1. ^{13}C NMR: see Table 2.

Dehydration of 1 with p-toluenesulphonic acid. To a soln of **1** (8.4 mg) with THF (10 ml) was added *p*-toluenesulphonic acid (2 mg). The reaction mixt. was refluxed overnight. The reaction mixt. was diluted with H_2O and then extracted with EtOAc. The EtOAc layer was evapd and then purified by prep. LC [CHCl_3 –MeOH (1:2, 180 ml)] to give an amorphous powder (5.5 mg), which was identified by direct comparison (^1H , ^{13}C NMR, IR, UV) with an authentic sample of cannabisin F (**2**).

Catalytic condensation of N-trans-feruloyltyramine. To a soln of *N*-*trans*-feruloyltyramine (isolated from this material, 4.13 g) in Me_2CO (25 ml) was added aq. FeCl_3 soln (10%, 25 ml) kept at room temp. for 2 days. The reaction mixt. was treated with 2M HCl soln (10 ml), then extracted with EtOAc (100 ml, twice). The EtOAc layer was washed with H_2O and then purified by prep. HPLC (H_2O –MeOH–MeCN, 7:2:2, 4 l) to afford cannabisin D (832 mg), grossamide (535 mg), cannabisin E (22 mg) and cannabisin G (14 mg). Cannabisin F could not be isolated, but was identified by co-TLC and co-injection on analytical HPLC.

Acknowledgements—We are grateful to Dr K. Sugama of this laboratory for 500 MHz NMR measurements and to Mr K. Kano for FAB-MS.

REFERENCES

1. Sakakibara, I., Katsuhara, T., Ikeya, Y., Hayashi, K. and Mitsuhashi, H. (1991) *Phytochemistry* **30**, 3013.

2. Sakakibara, I., Ikeya, Y., Hayashi, K. and Mitsuhashi, H. (1992) *Phytochemistry* **31**, 3219.
3. Agrawal, P. K. and Thakur, R. S. (1985) *Magn. Reson. Chem.* **23**, 389.
4. Miyase, T., Ueno, A., Tanizawa, N., Kobayashi, H. and Karasawa, H. (1987) *Chem. Pharm. Bull.* **35**, 1109.
5. Hattori, M., Hada, S., Shu, Y., Kakiuchi, N. and Namba, T. (1987) *Chem. Pharm. Bull.* **35**, 668.
6. Charles, H. L., Nist, B. J. and McCarthy, J. L. (1964) *J. Am. Chem. Soc.* **86**, 1186.
7. Hattori, M., Yang, X., Shu, Y., Kakiuchi, N., Tezuka, Y., Kikuchi, T. and Namba, T. (1988) *Chem. Pharm. Bull.* **36**, 648.
8. Sarkanen, K. V. and Wallis, A. F. A. (1973) *J. Chem. Soc. Perkin I* 1878.
9. Sarkanen, K. V. and Wallis, A. F. A. (1973) *J. Chem. Soc. Perkin I* 1869.
10. Kuo, Y., Kuo, P. and Lin, S. (1983) *Proc. Natl Sci. Counc. B. ROC.* **7**, 28.