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Abstract—Fruits of Iryanthera grandis were found to contain two new pairs of diastereoisomeric flavonolignoids of the

1,4-diaryl-2,3-dimethyl-n-butyldihydrochalcone type.

INTRODUCTION

Iryanthera grandis belongs to the Myristicaceae, a family
rich in neolignans and flavonoids. Its fruits have been
reported to contain the dihydrochalcone 1 and neolignan
2, besides tocotrienols and a juruenolide [2,3]. The
present work describes the occurrence in the same species
of two new pairs of diastereoisomeric flavonolignoids,
namely 3 and 4 (iryantherins G and H) and 5 and 6
(iryantherins I and J). Other species of Iryanthera (1.
laevis, I. ulei and I. paraensis) have already been reported
to contain flavonolignoids [4, 5]. Compounds 3-6 be-
long to the structural type represented by iryantherin B
(7), previously isolated from I. ulei bark [5].

RESULTS AND DISCUSSION

The comparison of the 'H and !3C NMR spectra of
iryantherin G acetate (3a) with those of iryantherin B
acetate (7a) (Tables 1-4) led to the identification of 3a as
15-de-0-methyl-15-0-acetyl-7a. The presence of only one
methoxyl group shown by 'H (63.78) and !3C (655.2)
NMR spectra allied to mass spectral data ([(M]* m/z 766
and ions a, b, c) confirmed the position of this methoxyl
group on ring D and the proposed structure for 3a. All
assignments for the aliphatic protons of the lignoid unit of
3a were confirmed by 'H-'H shift-correlated 2D NMR
spectroscopy (Table 5).

The structural determination of 4a was based on
comparison of its '"H and '*CNMR spectral data with
those of 3a. Significant differences were observed only for
the chemical shifts of the chiral carbons 7, §', 8 as well as
for protons and carbons attached to or near chiral
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centres. Thus 3a and 4a should form a pair of dia-
stereoisomers. Chemical shift assignments for the ali-
phatic protons of the lignoid unit in 4a were based on
"H-'H shift-correlated 2D spectroscopy (Table 6).

The differential NOE spectra of 3a and 4a showed
enhancement of signals for the Me-9” and Me-9' groups
when the methyne proton at C-7' and the methylene
protons at C-7" were irradiated, respectively. Conversely,
H-7 and 2H-7" had their signals increased upon irradia-
tion of Me-9” and Me-9', respectively. These observations
indicate the spatial vicinity of 2H-7” and Me-9’ and of a
syn-periplanar relationship between H-7° and Me-9".
These requisites, allied to the anti-periplanar relationship
between H-7° and H-8', evidenced by application of
the Karplus equation to their coupling constant (J
= 11.1 Hz), gives the molecules a relative rigidity. This
excludes stereochemical arrangements where the config-
urations of C-8 and C-8” are both R or both S and leads
to only two possible alternatives, rel-7R,8'R,8"S (I) and
rel-7'S,8'R,8"S (I). Localization in the shielding cones of
rings A and B provides relative protection to Me-9" in I
and to Me-9” in II. Hence, the 'H and '*C NMR
chemical shifts at relatively high field for Me-9" in the
spectra of 3a (and 7a), and for Me-9” in the spectra of 4a,
establish the respective configurations I and II for these
compounds.

Structural determinations of 5a and 6a were based on
comparison of their 'H (Tables 1 and 3) and '*CNMR
(Tables 2 and 4) spectra which proved to be closely similar
to those of 3a and 4a, respectively, except for signals due
to the presence of a methylenedioxy group in the former
versus a methoxy group in the latter. Mass spectral data
showed peaks for ions a, b and ¢, which confirmed the
position of the methylenedioxyl on ring D. Chemical shift
assignments of the lignoid aliphatic protons of 5a and 6a
were based on 'H-'H shift-correlated 2D spectroscopy
(Tables 7 and 8). As in the case of 3a and 4a, comparison
of NMR data led to stereochemical proposals for the
relative configuration of structure 5a as rel-7’R,8'R,8"S
and 6a as rel-7'S,8'R,8"S.
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From the biosynthetic point of view, it is interesting to
note that the lignoid unit of iryantherins G-J is the seco-
derivative of the aryltetraline (2). The flavonoid unit of
iryantherins G-J is the 15-de-O-methyl-dihydrochalcone
(1) previously isolated from the fruits of 1. laevis [4], but
not from the fruits of I. grandis [2, present work].

EXPERIMENTAL

Isolation of constituents. Fruits of I. grandis Ducke were
collected near Itaituba, Para State, by Dr Hipolito Fer-
reira Paulino Filho and identified by Dr William Rodrig-

1 ues. Fruits were dried, powdered and extracted first with

- § hexane and then with EtOH. The EtOH extract (2 g) was

3 R=R'=R’=H, R*=Me partitioned with hexane, CHCl,, EtOAc and MeOH. The
3a R=R'=Ac, R*=Me, R’*=H CHC, phase (802 mg) was submitted to CC over §i]ica
. ) s gel (CHCl;-EtOAc-MeOH, 49.5:49.5: 1) resulting in 10

] R=R'=H, R*-R’=CH,0 frs. Acetylation and two-step HPLC analysis of fr. 6
Sa R=R'=A¢, R*R*=CH,0 (50 mg) (1st step: Si-60 column 250 x 22 mm, 10 u-Perkin
R s ? Elmer; CH,Cl,—isoPrOH; 99.4:0.6; 2nd step: C-18 RAC

7 R=R’=H, R'=R*=Me I column 100 x 4.6 mm, 5 u-Whatman; MeCN-H,0;
7a R=Ac, R'=R’<Me, R*=H 53:47) gave 3a (3 mg), 4a (2 mg), 5a (2 mg) and 6a (2 mg).

Iryantherin G pentaacetate (3a). '"H NMR: Tables 1 and
3. '13C NMR: Tables 2 and 4. MS (70 eV) m/z (rel. int.): 766
(M]3, 1), 561 ([M —d]*, 4), 519 ([M — d — 42]%, 14),
477 ([M — d — 8417, 26),435([M — d — 126]", 26), 393
(IM —d — 168]%,18), 135([c] ", 5), 134 ([c — 1]+, 8), 121
([b1*, 100), 107 ([a]*, 64).

Iryantherin H pentaacetate (4a). '"H NMR: Tables 1 and
3.13C NMR: Tables 2 and 4. MS (70 V) m/z (rel. int.): 766
([M1%, 0), 561 (M —d]*, 4), 519 ([M —d — 42]", 13),
477 (M —d — 84]%,23),435(IM —d — 126]", 24), 393
(M —d—168]%,18), 135 ([c]™, 13), 134 ([c — 117, 11),
121 ([b]*, 100), 107 ([a]*, 66).

Iryantherin I pentaacetate (5a). '"H NMR: Tables 1 and
3. '3C NMR: Tables 2 and 4. MS (70 eV) m/z (rel. int.): 780
([M]", 0), 575 ([M — d]*, 3), 533 ([M — d — 42]", 16),
491 ([M —d — 84]%, 31),449 ([M — d — 126]%, 27), 407
([M —d — 168]", 16), 149 ([c]™, 6) 148 ([c — 117, 14),
135 ([b]*, 100), 121 ([a]", 17). 107 (e — 421%, 79).

—plopi 2_ Iryantherin J pentaacetate (6a). '"H NMR: Tables 1 and
4 R-R=R=H.R MeQ 3.13C NMR: Tables 2 and 4. MS (70 eV) m/z (rel. int.): 780
42 R=R'=Ac, R’=Me, R’=H ([M1*, 0), 575 ([M — d]*, 3), 533 (M — d — 42]", 18),

—RI—If R2LRO— 491 ([M — d — 84]%, 31), 449 ([M — d — 126]", 28), 407
6 R=R=H, R“R=CH,0 (™M —d — 168]", 16), 149 ([c]*, 8), 148 ([c — 177, 13),
6a  R=R'=Ac, R*R’=CH;0 135 ([b]*, 100), 121 ([a]*, 17), 107 ([e — 42]*, 74.
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Table 1. '"H NMR data for flavonoid units of iryantherin acetates

H 3a 4a Sa 6a 7a[5]
2,6 6.8-7.2 7.09 — — 6.7-7.2
m d 84 m
3,5 6.8-72 6.80 — — 6.7-73
m d, 85 m
2,3.5 - - 6.6-7.2 6.6-6.8 —
m m
7 29-3.1 2.8-3.1 2.8-3.1 2.7-3.1 29-31
m m m m m
8 2.9-3.1 2.8-3.1 2.8-3.1 2.7-3.1 29-3.1
m m m m m
14 6.8-7.2 6.94 6.6-7.2 6.95 6.46
m s m s s
MeO-4 3.78 3.76 — — 3.69
s S S
MeO-15 — — — 3.76
s
CH,0,-3,4 - 591 591 —
s s
Table 2. '*C NMR data for flavonoid units of iryantherin acet- Table 4. '*C NMR data for lignoid units of iryan-
ates therin acetates
C 3a 4a 6a 7a[5] C 3a 4a 6a Ta[5]
1 133.0 133.0 134.9 133.6 1 138.5% 138.4° 138.2* 138.7
2,6 129.5 129.5 108.2/121.2 129.5 2.6 129.4° 129.4° 129.5° 129.5
3,5 1139 115.5 147/109.0 1138 3.5 121.4° 121.3¢ 121.3¢ 121.4
4 158.0 158.0 145.7 157.9 4 149.0¢ 149.0¢ 148.8¢ 148.9
7 28.6 29.7 29.7 29.0 7 43.8 459 459 435
8 455 452 45.2 454 8 35.1 35.7 35.7 35.3
9 200.0 200.1 199.9 201.9 9 10.6 134 134 10.7
10 1294 128.2 126.5 1224 1” 1379* 138.2% 138.4° 138.7
11 145.6 145.7 145.7 — 27,6 130.3° 130.1° 130.1° 130.4
12 127.6 126.6 126.5 1224 375" 121.0° 121.0° 121.1° 120.9
13 150.0 151.0 149.8 — 4" 149.1¢ 149.74 149.74 149.2
14 116.0 1155 115.5 105.0 7" 40.9 41.5 41.5 41.1
15 149.7 148.5 148.8 155.7 8" 320 343 343 323
MeO-4 552 55.2 — 55.3 9" 14.0 12.3 12.4 14,0
MeO-15 — — e 55.9
CH,0,-3,4 — — 100.8 *dValues with the same letter are interchangeable
in the same column.
Table 3. '"H NMR data for lignoid units of iryantherin acetates
H 3a 4a sa 6a 7a[5] Table 5. '"H-'H 2D NMR correlations for 3a
2,6 6872 713 6672 713 67-73  Signals Correlated H signals
m d, 8.7 m d, 85 m , ,
6 6872 712 6672 109 6773  B3ET) 23-27(H-8)
m d.87 m 486 m 2.5-2.6 (H-7") 1.9-2.1 (H-8")
3.5 68-72 695 6677 696 6773 2.5-2.7 (H-8) 0.65 (H-9'), 1.9-2.1 (H-8"), 4.03 (H-7)
’ ‘ ) 1.9-2.1 (H-8") 0.85 (H-9"), 2.5-2.6 (H-7")
” 487 m .85 m 0.85 (H-9") 19-2.1 (H-8")
375" 68-72 690 6.6-72 690 6.7-7.3 0.65 (H.9) 2.5—2.6 (H-7")
m d, 8.7 m d, 8.6 m . -
7 4.03 4.09 4.04 4.10 4.10
d, 11.1 d 11.2 d, 112 d, 11.2 d,4.3
8 2.5-27  25-27  23-27 26-27 16-22
m m m m m Table 6. 'H-'H 2D NMR correlations for 4a
7" 25-26 24-26 25-27 24-26 21-25
m m m m m Signals (H) Correlated H signals
8" 1.9-21  1.5-1.7 21-18 1.5-1.7 16-22
m m m m m 4.09 (H-7) 2.5-2.7 (H-8)
Me-9’ 0.65 0.90 0.64 0.92 0.65 2.5-2.7 (H-8) 0.90 (H-9), 4.09 (H-7)
4,68 4,65 4,69 465 d 68 1.5-1.7 (H-8") 0.74 (H-9")
Me-9” 0.85 0.74 0.85 0.76 0.84 0.90 (H-9") 2.5-2.7 (H-8")
d,6.2 d, 6.5 d, 6.5 d, 6.6 d, 6.6 0.74 (H-9") 1.5-1.7 (H-8")




1016

Table 7. 'H-'H 2D NMR correlations for 5a

Signals (H) Correlated H signals

4.04 (H-7) 2.5-27 (H-8)

2.5-27(H-7") 1.8-2.1 (H-8")

2.5-2.7 (H-8) 0.64 (H-9"), 1.82-2.1 (H-8"), 4.04 (H-7')
1.8-2.1 (H-8") 0.85 (H-9"), 2.5-2.7 (H-7")

0.85 (H-9") 1.8-2.1 (H-8")

0.64 (H-9") 2.5-2.7 (H-8")

Table 8. 'H-'H 2D NMR correlations for 6a

Signals (H) Correlated H signals

4.10 (H-7) 2.6-2.7 (H-8)

26-2.7 (H-8) 0.92 (H-9), 4.10 (H-7)
2.4-2.6 (H-7") 1.5-1.7 (H-8")

1.5-1.7 (H-8") 0.76 (H-97), 2.4-2.6 (H-7")
0.92 (H-9) 2.6-2.7 (H-8)

0.76 (H-9") 1.5-1.7 (H-8")

Notes to spectral data (Tables 1-8). Spectra were
obtained in CDCl; solns. 'HNMR were recorded at
200 MHz, and "> CNMR at 50 MHz. Additional signals
for 3a: 'HNMR 6208, 223, 226, 231 (5xAcO);
3CNMR 620.6, 20.8, 20.9, 21.1, 21.1, 167.5, 167.8, 168.6,
169.4 (5 x AcO). Compound 4a: '"H NMR §2.10,2.23,2.28

D. H. S. SiLvA et al.

(5AcO); '*CNMR 4209, 21.1, 1679, 169.5, 169.6 (5
x AcO). Compound 5a: 'HNMR §2.05, 2.19, 2.25 (5
AcO). 6a: 'THNMR 2.15, 2.25 2.29 (5 x AcO); 1*CNMR
0209, 21.1, 167.8, 168.3, 169.4, 169.6 (5 x AcO). In Tables
1 and 3, the coupling constants, registered jointly with
signal multiplicities, are in Hz. In all }3CNMR, the n-
value of CH,-groups was ascertained by DEPT-135°
expts. In Table 4, data marked with letters a, b, ¢, d may
be interchanged with other identically marked data of the
same column.
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