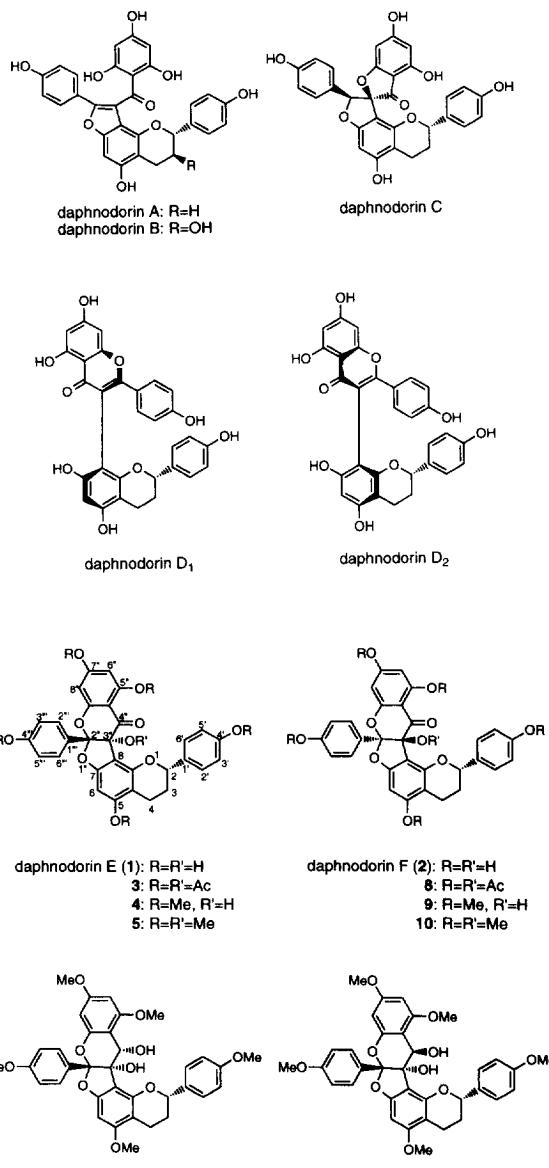


BIFLAVONOIDS FROM *DAPHNE ODORA**[†]KIMIYE BABA,[†] MICHIO YOSHIKAWA, MASAHIKO TANIGUCHI and MITSUGI KOZAWA^{†,‡}

Osaka University of Pharmaceutical Sciences, 10-65 Kawai, 2-chome, Matsubara-city, Osaka 580, Japan

(Received 31 May 1994)

Key Word Index— *Daphne odora*; Thymelaeaceae; roots; biflavonoids; daphnodorins E and F.**Abstract**—Two new biflavonoids, daphnodorins E and F, were isolated from the roots of *Daphne odora* and their structures established from spectral and chemical evidence.


INTRODUCTION

In previous papers [2-5], we reported the isolation of two new furanobiflavonoids, daphnodorins A and B, a new spirobiflavonoid, daphnodorin C, and two C-8/C-3" biflavonoid, atropisomers, daphnodorin D₁ and D₂, together with four known coumarins, daphnetin, daphnetin, umbelliferone and daphnetinicin, from the roots of *Daphne odora*. In the present work, we have isolated two new biflavonoids, daphnodorins E and F (1 and 2). This paper deals with their isolation and structural elucidation.

RESULTS AND DISCUSSION

Crushed dried roots of *D. odora* were extracted with ethyl acetate, the combined extracts concentrated and the residue was subjected to repeated chromatographic purification to give the two new biflavonoids, daphnodorins E and F (1 and 2).

Compound 1 was isolated as a pale yellow amorphous powder and assigned the molecular formula C₃₀H₂₂O₁₀ by FD-mass spectrometry (*m/z* 542 [M]⁺). The UV spectrum showed absorption maxima at 221, 254, 291 and 311 nm. The IR spectrum showed absorption bands at 3433, 2930, 1640 and 1517 cm⁻¹, suggesting the presence of hydroxyl and carbonyl groups and an aromatic ring. The ¹H NMR spectrum (Table 1) showed signals assignable to two pairs of 4-oxyphenyl groups [δ 7.34 (2H, *d*, *J* = 8.8 Hz), 6.80 (2H, *d*, *J* = 8.8 Hz) and 7.13 (2H, *d*, *J* = 8.8 Hz), 6.78 (2H, *d*, *J* = 8.8 Hz)], a 2,4,6-trioxyphenyl group [δ 6.03 (1H, *d*, *J* = 2.1 Hz), 5.93 (1H, *d*, *J* = 2.1 Hz)], an alcoholic hydroxyl group [δ 5.29 (1H, *s*)] and five phenolic hydroxyl groups [δ 11.61, 9.85, 8.87, 8.61 and 8.29 (each 1H, *s*)]. Furthermore, the signals owing to the protons at the C-6 (or C-8), C-2, C-3 and C-4 positions of a 2,8 (or 2,6)-disubstituted 5,7-dioxy-3,4-dihydrobenzopyran ring were observed at δ 6.24 (1H, *s*),

*Part 12 in the series 'Chemical Studies on the Constituent of Thymelaeaceous Plants'. For part 11 see ref. [1].

[†]Author to whom correspondence should be addressed.

Table 1. ^1H NMR spectral data for **1** and **3–5** in CDCl_3 , TMS. (Values in parentheses are coupling constants in Hz)

H	1 (acetone- d_6)	3	4	5
2	4.95 <i>dd</i> (10.1, 1.9)	5.18 <i>br d</i> (9.6)	5.08 <i>dd</i> (8.5, 2.2)	5.13 <i>dd</i> (7.7, 2.2)
3	2.13 <i>m</i>	1.83 <i>m</i>	2.13 <i>m</i>	2.19 <i>m</i>
	1.73 <i>m</i>		1.84 <i>m</i>	1.89 <i>m</i>
4	2.61 <i>m</i>	2.64 <i>m</i>	2.54 <i>m</i>	2.59 <i>m</i>
				2.44 <i>m</i>
6	6.24 <i>s</i>	6.30 <i>s</i>	6.29 <i>s</i>	6.34 <i>s</i>
2', 6'	7.13 <i>d</i> (8.8)	7.57 <i>d</i> (8.8)	7.18 <i>d</i> (8.8)	7.14 <i>d</i> (8.8)
3', 5'	6.78 <i>d</i> (8.8)	7.06 <i>d</i> (8.8)	6.83 <i>d</i> (8.8)	6.81 <i>d</i> (8.8)
6''	6.03 <i>d</i> (2.1) ^a	6.99 <i>d</i> (2.2) ^a	6.12 <i>d</i> (2.2) ^a	6.01 <i>d</i> (2.2)
8''	5.93 <i>d</i> (2.1) ^a	6.69 <i>d</i> (2.2) ^a	6.07 <i>d</i> (2.2) ^a	6.03 <i>d</i> (2.2)
2'', 6''	7.34 <i>d</i> (8.8)	7.67 <i>d</i> (8.8)	7.46 <i>d</i> (8.8)	7.51 <i>d</i> (8.8)
3'', 5''	6.80 <i>d</i> (8.8)	7.13 <i>d</i> (8.8)	6.88 <i>d</i> (8.8)	6.88 <i>d</i> (8.8)
-OH	11.61 <i>s</i>	2.31 <i>s</i>	-OH	4.90 <i>br s</i>
	9.85 <i>s</i>	2.30 <i>s</i>		3.82 <i>s</i>
	8.87 <i>s</i>	2.28 <i>s</i> \times 2	-OMe	3.80 <i>s</i> \times 2
	8.61 <i>s</i>	2.09 <i>s</i>	3.79 <i>s</i>	3.75 <i>s</i>
	8.29 <i>s</i>	1.55 <i>s</i>	3.77 <i>s</i>	3.65 <i>s</i>
	5.29 <i>s</i>			3.26 <i>s</i>

Assignments are based on ^{13}C – ^1H COSY, spin decoupling, long range ^{13}C – ^1H COSY and HMBC measurements.

^aAssignments may be reversed in each column.

4.95 (1H, *dd*, *J* = 10.1, 1.9 Hz), 2.13 (1H, *m*), 1.73 (1H, *m*) and 2.61 (2H, *m*). In the ^{13}C NMR spectrum (Table 2), a carbonyl carbon signal (δ 194.6) and a quaternary carbon signal attached to an oxygen atom (δ 82.4) were observed, in addition to the signals described above. Upon acetylation with acetic anhydride and pyridine, **1** formed a hexaacetate (**3**), $\text{C}_{42}\text{H}_{34}\text{O}_{16}$. In the ^1H NMR spectrum of **3** (Table 1), one of the six acetyl signals was shifted to a higher field at δ 1.55. Methylation of **1** with diazomethane afforded a pentamethyl ether (**4**), $\text{C}_{35}\text{H}_{32}\text{O}_{10}$, and subsequent reaction with methyl iodide gave a hexamethyl ether (**5**), $\text{C}_{36}\text{H}_{34}\text{O}_{10}$. Reduction of **4** with sodium borohydride in ethanol and tetrahydrosuran gave two alcohols, **6** and **7** ($\text{C}_{35}\text{H}_{34}\text{O}_{10}$). In the ^1H NMR spectrum of **6** (Table 3), a newly formed benzylmethine proton signal at δ 5.10 was coupled only with a signal assignable to a hydroxyl group, resulting from the reduction of carbonyl group, by 11 Hz. Furthermore, the ^{13}C NMR of **6** (Table 3) showed the presence of a sp^3 carbon attached to an oxygen atom and the lack of a carbonyl carbon. The NMR profile of the other alcohol **7** (Table 3) coincided with that of **6**. There was also a signal assignable to a benzyl methine proton (δ 5.22) coupled by 9.4 Hz with a hydroxy group. From the above results, the structure of **1** was established as shown. This structure was further supported by the HMBC spectra of **3** and **7** and the HR- MS spectrum of **4**.

Compound **2** was isolated as a pale yellow amorphous powder and assigned the molecular formula $\text{C}_{30}\text{H}_{22}\text{O}_{10}$, the same as **1**, by FD-mass spectrometry (m/z 542 [M^+]). The UV spectrum of **2** showed absorption maxima at 219.5, 230.0, 253.5, 290.5 and 313.0 nm. The IR spectrum showed absorption bands at 3427, 2930, 1655, 1620 and 1517 cm^{-1} , indicating the presence of hydroxyl and carbonyl groups and an aromatic ring. The ^1H NMR

spectrum of **2** (Table 4) showed signals owing to two pairs of 4-oxyphenyl groups [δ 7.30 (2H, *d*, *J* = 8.8 Hz), 6.84 (2H, *d*, *J* = 8.8 Hz) and 7.35 (2H, *d*, *J* = 8.8 Hz), 6.80 (2H, *d*, *J* = 8.8 Hz)], a 2,4,6-trioxyphenyl group [δ 5.95 (1H, *d*, *J* = 2.2 Hz), 5.92 (1H, *d*, *J* = 2.2 Hz)], a 2,8 (or 2,6)-disubstituted-5,7-dioxy-3,4-dihydrobenzopyran ring [δ 6.27 (1H, *s*), 4.84 (1H, *br d*, *J* = 8.4 Hz), 2.26 (1H, *m*), 1.89 (1H, *m*) and 2.65 (2H, *m*)] as well as an alcoholic hydroxyl group [δ 5.35 (1H, *s*)] and five phenolic hydroxyl groups [δ 11.51 (1H, *s*), 10.07 (1H, *s*), 9.06 (1H, *s*), 8.76 (1H, *s*) and 8.47 (1H, *s*)]. These signals were closely related to those of **1**. On the other hand, the ^{13}C NMR spectrum of **2** (Table 5) was very similar to that of **1**. Furthermore, the NMR profile of the hexaacetate (**8**), pentamethyl ether (**9**) and hexamethyl ether (**10**) (Tables 4 and 5) were also similar to those of **3–5**. Thus, **2** was assumed to be a stereoisomer of **1**. The CD spectroscopic studies of the flavans including *d*-catechin and *l*-epicatechin have indicated that the Cotton effect ascribed to the A-chromophore in the range of 250–300 nm is available for the determination of the absolute configuration at C-2 [6]. However, it may not be appropriate to compare the CD spectra of **5** and **10** with those of simple flavans, because **5** and **10** contain two 4-hydroxyphenyl groups which are non-coplanar to each other, and these CD spectra showed strong Davydou splitting of the Cotton effect, [**5**: negative first Cotton (295 nm), positive second Cotton (280 nm), **10**: positive first Cotton (294 nm), negative second Cotton (278 nm), in the neighbourhood of the absorption band of the A-chromophore. It seems reasonable to assume that the absolute configurations at C-2 of **1** and **2** are *S*, similar to those of flavans isolated previously. The relative configurations between C-2'' and C-3'' of both **1** and **2** were concluded to be *trans* by the NOESY spectra of **5** and **10** (data not shown).

Table 2. ^{13}C NMR spectral data for **1** and **3–5** (δ in CDCl_3 , TMS)

C	1 (acetone- d_6)	3	4	5
2	78.0	77.2	76.8	76.6
3	30.4	29.6	29.4	28.9
4	20.1	20.4	18.8	18.3
4a	105.2	110.3	105.7	105.1
5	154.3 ^a	152.7	160.9	160.9 ^a
6	92.1	96.9	87.7	88.0
7	158.1 ^a	160.0	160.5	161.1 ^a
8	108.3	104.7	108.5	104.8
8a	159.7 ^a	155.4	152.7	154.0
1'	133.8	139.3	134.2	133.9
2', 6'	127.9	126.8	126.9	126.9
3', 5'	116.2	122.0	114.0	113.8 ^b
4'	159.9 ^a	150.4	159.2	159.1
2''	118.7	116.9	117.6	117.8
3''	82.4	88.7	82.8	87.5
4''	194.6	179.2	188.8	188.2
4''a	100.1	113.8	102.8	104.5
5''	161.2 ^a	151.9 ^a	162.1	161.9
6''	95.8 ^b	110.9 ^b	93.7 ^b	93.3 ^c
7''	163.4 ^a	156.3	166.9 ^a	165.8
8''	97.5 ^b	112.9 ^b	93.9 ^b	93.8 ^c
8''a	165.5 ^a	158.7 ^a	164.0	163.0
1'''	126.4	133.5	127.3	127.8
2''', 6'''	129.8	128.9	128.6	128.6
3''', 5'''	115.8	121.3	113.9	114.0 ^b
4'''	168.4 ^a	152.2	161.0	161.1 ^a
$-\text{OCOMe}$ $\left[\begin{array}{c} 170.4 \\ 170.2 \\ 169.70 \\ 169.0 \\ 168.7 \\ 168.4 \end{array} \right]$				
$-\text{OMe}$ $\left[\begin{array}{c} 56.4 \\ 56.1 \\ 56.0 \\ 55.6 \times 2 \\ 54.5 \end{array} \right]$				
$-\text{OCOMe}$ $\left[\begin{array}{c} 21.4 \\ 21.3 \\ 21.3 \\ 21.0 \times 2 \\ 19.9 \end{array} \right]$				
$-\text{OMe}$ $\left[\begin{array}{c} 56.2 \\ 56.0 \\ 55.8 \\ 55.5 \times 2 \end{array} \right]$				

Assignments are based on $^{13}\text{C}-^1\text{H}$ COSY, long range $^{13}\text{C}-^1\text{H}$ COSY and HMBC measurements.

^{a–c} Assignments with the same superscript may be reversed in each column.

The absolute configurations of C-2'' and C-3'' of **1** and **2** have been determined to be 2''R, 3''R and 2''S, 3''S, respectively, by application of the dibenzoate rule to the splitting of the Cotton effects described above. Furthermore, comparison of the ^1H NMR data of the two alcohols, **6** and **7** (Table 3), reveals shielding of a benzyl methine proton by the 4-oxyphenyl group in **6** relative to the chemical shift of that in **7**, indicating that the relative configuration between C-3'' and C-4'' of **6** is *cis* and that of **7** *trans*.

EXPERIMENTAL

General. EI-MS: 70 eV. FD-MS: 19 mA. ^1H and ^{13}C NMR: 300 and 75 MHz with TMS as int. standard. CC: Merck silica gel 60 (70–230 mesh) and Sephadex LH-20. TLC: Merck silica gel 60 F₂₅₄ (0.25 mm) and What-

man silica gel 150A PLK5F (1 mm). Spots and bands were detected by UV irradiation (254 and 365 nm).

Plant material. Plants of *D. odora* Thunb. were cultivated and collected in the botanical garden of the Osaka University of Pharmaceutical Sciences in January 1992. A voucher specimen is deposited in this university.

Extraction and isolation. Air-dried roots (4.5 kg) were chopped into small pieces and extracted with EtOAc (20 l \times 5) under reflux. The combined MeOH extracts were concd to dryness *in vacuo*. The residue (825 g) was subjected to CC on silica gel eluting successively with hexane-EtOAc solvent system of increasing polarity. The 30% MeOH eluates were rechromatographed on Sephadex LH-20 with MeOH to give daphnodorin E (**1**) (4.6 g) and daphnodorin F (**2**) (5.0 g).

Daphnodorin E (1). Pale yellow amorphous powder, $\text{C}_{30}\text{H}_{22}\text{H}_{10}$. FD-MS m/z 542 $[\text{M}]^+$. UV $\lambda_{\text{max}}^{\text{dioxane}}$ nm

Table 3. NMR spectral data for **6** and **7**. (Values in parentheses are coupling constants in Hz, δ in CDCl_3 , TMS)

	6	7		
	H	C	H	C
2	4.99 <i>dd</i> (10.0, 2.0)	78.7	5.13 <i>dd</i> (8.8, 2.3)	77.1
3	2.15 <i>m</i>	29.0	2.15 <i>m</i>	28.2
	1.96 <i>m</i>		1.93 <i>m</i>	
4	2.63 <i>m</i>	19.7	2.59 <i>m</i>	18.6
4a		104.7		106.7
5		158.7 ^a		157.8
6	6.15 <i>s</i>	87.2	6.27 <i>s</i>	94.5
7		160.1		152.4
8		106.6		107.6
8a		151.9		153.4
1'		133.3		134.1
2', 6'	7.32 <i>d</i> (8.7)	127.9	7.19 <i>d</i> (8.4)	127.5
3', 5'	6.94 <i>d</i> (8.7)	114.5	6.86 <i>d</i> (8.4)	114.2
4'		160.3 ^a		159.7
2''		116.1		116.7
3''		87.0		87.6
4''	5.10 <i>d</i> (11.0)	71.3	5.22 <i>d</i> (9.4)	71.9
4''a		108.7		107.4
5''		160.4 ^a		157.2 ^a
6''	6.28 <i>d</i> (2.6)	95.3	6.00 <i>d</i> (2.3)	93.1
7''		160.8		163.5 ^a
8''	6.16 <i>d</i> (2.6)	96.5	6.14 <i>d</i> (2.3)	88.7
8''a		155.1		162.6
1'''		127.4		129.1
2''', 6'''	7.57 <i>d</i> (9.0)	129.0	7.56 <i>d</i> (8.4)	128.7
3''', 5'''	6.93 <i>d</i> (9.0)	113.6	6.94 <i>d</i> (8.4)	113.7
4'''		160.8 ^a		160.7
-OH		3.94 <i>d</i> (11.0)	-OH	3.93 <i>d</i> (9.4)
[3.49 <i>br s</i>			[3.34 <i>br s</i>	
3.84 <i>s</i>		56.2	55.8 × 2	
3.83 <i>s</i>		55.9	55.6 × 2	
-OMe		55.7	55.5	
[3.79 <i>s</i>		55.6	3.82 <i>s</i>	
3.74 <i>s</i>		55.5	3.81 <i>s</i>	
3.72 <i>s</i>			-OMe	
[3.72 <i>s</i>			3.74 <i>s</i>	
3.72 <i>s</i>			3.62 <i>s</i>	

Assignments are based on ^{13}C - ^1H COSY, spin decoupling, long range ^{13}C - ^1H COSY and HMBC measurements.

^aAssignments may be reversed in each column.

(log ϵ): 221.0 (4.73), 254.0 (3.79), 291.0 (4.22), 311.0 (4.01). IR $\nu_{\text{max}}^{\text{KBr}}$ cm $^{-1}$: 3433, 2930, 1640, 1517. ORD (dioxane; c 0.76) $[\alpha]^{18}$ (nm): + 36.8° (589), + 55.3° (550), + 76.3° (500), + 126.3°, + 223.7° (410). CD (dioxane; c 3.69 $\times 10^{-5}$) $\Delta \epsilon^{18}$ (nm): 0 (365), - 1.31 (344), 0 (335), + 8.54 (312), + 1.64 (294), + 3.61 (285), 0 (275), - 3.94 (263), - 1.97 (245). ^1H and ^{13}C NMR in Tables 1 and 2.

Acetate of compound 1(3). Pale yellow viscous oil. HR-MS m/z 794.1850 $[M]^+$ (calcd for $C_{42}H_{34}O_{16}$, 794.1844). UV $\lambda_{\text{max}}^{\text{dioxane}}$ nm (log ϵ): 220.5 (4.78), 260.0 (4.20), 300.0 (3.79). CD (dioxane; $c 3.78 \times 10^{-5}$) $\Delta \epsilon^{18}$ (nm): 0 (390), + 4.01 (328), 0 (310), - 3.53 (292), - 3.21 (288), - 6.42 (271), - 4.01 (258), - 7.06 (241), 0 (230). ^1H and ^{13}C NMR in Tables 1 and 2.

Pentamethyl ether of compound 1(4). Pale yellow viscous oil. HR-MS m/z 612.1974 $[M]^+$ (calcd for $C_{35}H_{32}O_{10}$, 612.1993). UV $\lambda_{\text{max}}^{\text{dioxane}}$ nm (log ϵ): 214.0 (4.88), 229.0 (4.79), 283.0 (4.28). IR $\nu_{\text{KBr}}^{\text{cm}^{-1}}$: 3424, 2938,

1686, 1612, 1578, 1516. ORD (dioxane; c 0.50) $[\alpha]^{18}$ (nm): 0° (408), + 8.0° (400), + 20.0° (375), + 24.0° (370), + 72.0° (350). CD (dioxane; c 3.72×10^{-5}) $\Delta \epsilon^{18}$ (nm): 0 (354), + 0.74 (323), 0 (313), - 4.09 (296), 0 (285), + 0.84 (277), 0 (263). ^1H and ^{13}C NMR in Tables 1 and 2.

Hexamethyl ether of compound 1(5). Pale yellow viscous oil. HR-MS m/z 626.2148 [M]⁺ (calcd for $C_{36}H_{34}O_{10}$, 626.2149), 447.1798 ($C_{27}H_{27}O_6$, 447.1805), 312.0990 ($C_{18}H_{16}O_5$, 312.0996), 180.0425 ($C_9H_8O_4$, 180.0422), 134.0715 ($C_9H_{10}O$, 134.0730). UV $\lambda_{\text{max}}^{\text{dioxane}}$ nm (log ε): 237.0 (4.37), 282.0 (4.12). CD (dioxane; $c 3.51 \times 10^{-5}$) $\Delta \varepsilon^{18}$ (nm): 0 (333), + 1.21 (317), 0 (306), - 3.28 (295), 0 (288), + 5.35 (280), 0 (258). ¹H and ¹³C NMR in Tables 1 and 2.

Reduction of compound 4. A mixt. of **4** (120 mg) in THF (10 ml) and NaBH₄ (200 mg) in EtOH (10 ml) was stirred and allowed to stand at room temp. overnight. The reaction mixt. was diluted with H₂O (50 ml), acidified with

2 M HCl and then extracted with Et₂O. The Et₂O soln was dried and concd *in vacuo*. The residue was purified by prep. TLC with hexane-EtOAc (2:1) to give **6** (20 mg) and **7** (55 mg).

Compound 6. Viscous oil. FD-MS *m/z* 614 [M]⁺. UV $\lambda_{\text{max}}^{\text{dioxane}}$ nm (log ϵ): 202.0 (4.13), 214.0 (4.77), 278.5 (3.98). CD (dioxane; $c3.26 \times 10^{-5}$) $\Delta \epsilon^{18}$ (nm): 0 (326), + 0.37 (318), 0 (310), - 2.05 (287), 0 (267). ¹H and ¹³C NMR in Table 3.

Compound 7. Amorphous powder. FD-MS *m/z* 614 [M]⁺. UV $\lambda_{\text{max}}^{\text{dioxane}}$ nm (log ϵ): 219.0 (4.91), 274.0 (3.95),

283.0 (3.86). CD (dioxane; $c3.26 \times 10^{-5}$) $\Delta \epsilon^{18}$ (nm): 0 (320), + 0.37 (296), 0 (288), - 2.14 (270), 0 (260). ¹H and ¹³C NMR in Table 3.

Daphnodorin F (2). Pale yellow amorphous powder, C₃₀H₂₂O₁₀. FD-MS *m/z* 542 [M]⁺. UV $\lambda_{\text{max}}^{\text{dioxane}}$ nm (log ϵ): 219.5 (4.70), 230.0 (4.64), 253.5 (3.74), 290.5 (4.15), 313.0 (392). IR $\nu_{\text{max}}^{\text{KBr}}$ cm⁻¹: 3427, 2930, 1655, 1620, 1517. ORD (dioxane; $c0.60$) $[\alpha]^{18}$ (nm): - 120.0° (589), - 150.0° (550), - 206.7° (500), - 300.0° (450), - 500.0° (400), - 646.7° (380). CD (dioxane; $c4.06 \times 10^{-5}$) $\Delta \epsilon^{18}$ (nm): 0 (372), + 0.90 (345), 0 (337), - 9.41 (314), 0 (297),

Table 4. ¹H NMR spectral data for **2** and **8–10**. (Values in parentheses are coupling constants in Hz, δ in CDCl₃, TMS)

H	2 (acetone- <i>d</i> ₆)	8	9	10
2	4.84 <i>br d</i> (8.4)	5.05 <i>dd</i> (10.0, 1.3)	4.83 <i>br d</i> (9.6)	4.74 <i>br d</i> (9.2)
3	2.26 <i>m</i>	1.82 <i>m</i>	2.23 <i>m</i>	2.36 <i>m</i>
4	1.89 <i>m</i>		1.94 <i>m</i>	1.85 <i>m</i>
4	2.65 <i>m</i>	2.64 <i>m</i>	2.59 <i>m</i>	2.75 <i>m</i>
6	6.27 <i>s</i>	6.33 <i>s</i>	6.29 <i>s</i>	6.32 <i>s</i>
2', 6'	7.30 <i>d</i> (8.8)	7.59 <i>d</i> (8.7)	7.33 <i>d</i> (8.5)	7.39 <i>d</i> (8.8)
3', 5'	6.84 <i>d</i> (8.8)	7.10 <i>d</i> (8.7)	6.92 <i>d</i> (8.5)	6.96 <i>d</i> (8.8)
6''	5.95 <i>d</i> (2.2) ^a	6.96 <i>d</i> (2.2) ^a	6.02 <i>d</i> (2.2) ^a	5.99 <i>d</i> (2.2)
8''	5.92 <i>d</i> (2.2) ^a	6.65 <i>d</i> (2.2) ^a	6.10 <i>d</i> (2.2) ^a	6.95 <i>d</i> (2.2)
2'', 6''	7.35 <i>d</i> (8.8)	7.56 <i>d</i> (8.8)	7.45 <i>d</i> (8.5)	7.51 <i>d</i> (8.8)
3'', 5''	6.80 <i>d</i> (8.8)	7.07 <i>d</i> (8.8)	6.89 <i>d</i> (8.5)	6.88 <i>d</i> (8.8)
-OH	11.51 <i>s</i>	2.30 <i>s</i> \times 2	-OH \square 4.90 <i>br s</i>	3.83 <i>s</i> \times 2
	10.07 <i>s</i>			
	9.06 <i>s</i>	2.29 <i>s</i> \times 2	3.80 <i>s</i> \times 3	3.80 <i>s</i>
	8.76 <i>s</i>			
	8.47 <i>s</i>	2.03 <i>s</i>	-OMe \square 3.76 <i>s</i>	3.71 <i>s</i>
	5.35 <i>s</i>			
		1.64 <i>s</i>	3.63 <i>s</i>	3.44 <i>s</i>
				3.30 <i>s</i>

Assignments are based on ¹³C-¹H COSY, spin decoupling, long range ¹³C-¹H COSY and HMBC measurements.

^a Assignments may be reversed in each column.

Table 5. ¹³C NMR spectral data for **2** and **8–10** (δ in CDCl₃, TMS)

C	2 (acetone- <i>d</i> ₆)	8	9	10
2	77.9	76.6	76.8	77.1
3	29.3	28.3	28.3	29.2
4	20.4	20.1	19.5	20.1
4a	105.6	109.9	105.9	105.1
5	154.4 ^a	152.9	160.9 ^a	161.1
6	92.2	97.1	87.7	88.1
7	158.2 ^a	160.1	160.3	170.0
8	108.5	104.6	109.0	105.8
8a	159.7 ^a	155.6	152.8	154.3
1'	133.2	138.9	133.5	133.6
2', 6'	128.4	127.0	127.3	127.2
3', 5'	116.2	121.9	113.9	114.0
4'	159.9 ^a	150.5	159.4	159.3
2''	118.9	116.8	117.7	118.0
3''	82.2	88.9	82.7	87.7
4''	194.4	178.6	188.8	188.4
4''a	100.1	113.6	103.1	105.2

Table 5. *Continued*

C	2(acetone- <i>d</i> ₆)	8	9	10
5"	161.1 ^a	151.7 ^a	161.9 ^b	161.4
6"	95.8 ^b	110.8 ^b	93.7	93.7
7"	163.3 ^a	156.3	166.7 ^b	165.4
8"	97.5 ^b	112.7 ^b	93.8	93.4
8" ^a	165.4 ^a	158.7 ^a	163.7	162.6
1"	126.4	133.5	127.4	128.0
2", 6"	129.8	129.1	128.6	128.6
3", 5"	115.9	121.3	114.0	113.8
4"	168.4 ^a	152.1	161.0 ^a	160.9
		170.2	56.3	56.1
		170.0	56.1	56.0
	-OCOMe	169.8	-OMe	-OMe
		169.1	55.9	55.7
		168.8	55.6 × 2	55.6 × 2
		168.5		54.6
			21.4 × 3	
			21.1	
	-OCOMe	21.0		
		20.0		

Assignments are based on ¹³C-¹H COSY, long range ¹³C-¹H COSY and HMBC measurements.

^{a, b} Assignments with the same superscript may be reversed in each column.

+ 0.75 (294), 0 (292), - 1.94 (284), 0 (276), + 4.18 (260), 0 (248), - 2.99 (241), 0 (238). ¹H and ¹³C NMR in Tables 4 and 5.

Acetate of compound 2 (8). Pale yellow viscous oil. HR-MS *m/z* 794.1828 [M]⁺ (calcd for C₄₂H₃₄O₁₆, 794.1844). UV $\lambda_{\text{max}}^{\text{dioxane}}$ nm (log ϵ): 218.0 (4.71), 262.0 (4.14), 298.0 (3.82). CD (dioxane; $c = 3.78 \times 10^{-5}$) $\Delta \epsilon^{18}$ (nm): 0 (386), - 3.69 (328), 0 (310), + 2.73 (294), + 2.25 (281), + 4.81 (272), 0 (259), - 1.60 (254), 0 (248), + 2.41 (240), 0 (235). ¹H and ¹³C NMR in Tables 4 and 5.

Pentamethyl ether of compound 2 (9). Pale yellow viscous oil. HR-MS *m/z* 616.2014 [M]⁺ (calcd for C₃₅H₃₂O₁₀, 612.1993). UV $\lambda_{\text{max}}^{\text{dioxane}}$ nm (log ϵ): 213.5 (3.76), 227.0 (3.69), 282.5 (3.14), 290.0 (3.11). IR $\nu_{\text{max}}^{\text{KBr}}$ cm⁻¹: 3422, 2938, 1687, 1612, 1578, 1516. ORD (dioxane; $c = 0.50$) $[\alpha]^{18}$ (nm): - 64.0° (589), - 72.0° (550), - 96.0° (500), - 140.0° (450), - 228.0° (400), - 388.0° (370), - 736.0° (350). CD (dioxane; $c = 3.27 \times 10^{-5}$) $\Delta \epsilon^{18}$ (nm): 0 (400), - 3.52 (325), 0 (310), + 6.68 (295), 0 (285), - 4.08 (275), - 1.48 (257), - 8.35 (240). ¹H and ¹³C NMR in Tables 4 and 5.

Hexamethyl ether of compound 2 (10). Pale yellow viscous oil. HR-MS *m/z* 626.2143 [M]⁺ (calcd for

C₃₆H₃₄O₁₀, 626.2149), 447.1799 (C₂₇H₂₇O₆, 447.1805), 312.0998 (C₁₈H₁₆O₅, 312.0996), 180.0420 (C₉H₈O₄, 180.0422), 134.0730 (C₉H₁₀O, 134.0730). UV $\lambda_{\text{max}}^{\text{dioxane}}$ nm (log ϵ): 224.0 (4.59), 283.0 (3.98). CD (dioxane; $c = 3.19 \times 10^{-5}$) $\Delta \epsilon^{18}$ (nm): 0 (365), - 1.90 (317), 0 (307), + 4.55 (294), 0 (287), - 6.45 (278), - 1.13 (258), - 2.66 (250). ¹H and ¹³C NMR in Tables 4 and 5.

REFERENCES

1. Baba, K., Taniguchi, M. and Kozawa, M. (1994) *Phytochemistry*, **37**, 879.
2. Baba, K., Takeuchi, K., Hamasaki, F. and Kozawa, M. (1986) *Chem. Pharm. Bull.* **34**, 595.
3. Baba, K., Takeuchi, K., Doi, M., Inoue, M. and Kozawa, M. (1986) *Chem. Pharm. Bull.* **34**, 1540.
4. Baba, K., Takeuchi, K., Doi, M. and Kozawa, M. (1986) *Chem. Pharm. Bull.* **35**, 1853.
5. Baba, K., Takeuchi, K. and Kozawa, M. (1987) *Yakugaku Zasshi* **107**, 963.
6. Korver, O. and Wilkins, C. K. (1971) *Tetrahedron* **27**, 5459.