

(\pm)-8-OXOHYPECORININE FROM *HYPECOUM PROCUMBENS* VAR. *GLAUCESCENS*

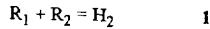
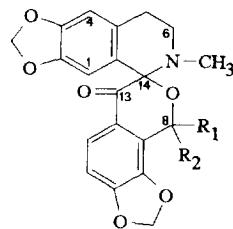
HASSAN-ELRADY A. SAAD

Department of Pharmacognosy, Faculty of Pharmacy, University of Mansoura, El-Mansoura 35516, Egypt

(Received 21 June 1994)

Key Word Index—*Hypecoum procumbens* var. *glaucescens*; Hypocreaceae; isoquinoline alkaloids; secoberbines; (\pm)-8-oxohypecorinine; (\pm)-hypercorinine; aporphines; isocorydine; protopines; allocryptopine; cryptopine; protopine.

Abstract—A new secoberbine alkaloid, (\pm)-8-oxohypecorinine, together with (\pm)-hypercorinine, isocorydine, allocryptopine, cryptopine and protopine were isolated from *Hypecoum procumbens* var. *glaucescens* and spectroscopically characterized.



INTRODUCTION

The genus *Hypecoum* [1] comprises ca 15 species growing in the Mediterranean region, central Asia, Pakistan and northern China [2]. It is represented in Egypt by nine species [1]. Although nothing could be traced in the current literature about the phytochemical study of *H. procumbens* var. *glaucescens* native to Egypt, the alkaloids of *H. procumbens* growing in different localities has been the subject of several investigations [3-10]. Protopines, berbines, secoberbines, benzophenanthridines and aporphines were reported as major groups [4]. In continuation of our work on *Hypecoum* species of Egypt [11], the alkaloids of *H. procumbens* var. *glaucescens* were investigated. It afforded, in addition to (\pm)-hypercorinine (1), isocorydine, allocryptopine, cryptopine and protopine, the new secoberbine alkaloid (\pm)-8-oxohypecorinine (2), whose structure elucidation is described herein.

RESULTS AND DISCUSSION

From whole plants of *H. procumbens* var. *glaucescens*, the new optically inactive secoberbine alkaloid, (\pm)-8-oxohypecorinine (2), and five known tertiary bases belonging to the secoberbine ((\pm)-hypercorinine 1 [11, 12]) aporphine (isocorydine [13]) and protopine (allocryptopine [14], cryptopine [14], protopine [14]) groups were isolated.

(\pm)-8-Oxohypecorinine (2), was obtained as an amorphous orange powder from the chloroform-isopropanol extract by column chromatography and preparative TLC. It showed UV maxima of a secoberbine alkaloid of the hypercorinine type, but with a strong bathochromic shift for the band at longer wavelength. The IR spectrum demonstrated two carbonyl adsorption bands at 1665 and 1645 cm^{-1} of a six-membered lactone

and a conjugated ketone [10]. The EI-mass spectrum displayed a weak $[\text{M}]^+$ at m/z 381 consistent with the molecular formula $\text{C}_{20}\text{H}_{15}\text{NO}_7$ (calcd 381.08484) with an unsaturation number of 14. The ^1H NMR (Table 1) showed close resemblance with (±)-hypercorinine (1) by signals for four aromatic protons at δ 6.61 (H-1), 6.73 (H-4), 7.01 (H-11) and 7.90 (H-12) of two tetrasubstituted benzene rings and two methylenedioxy protons at δ 5.99 and 6.11. However, it was significantly different from 1 by the absence of the $\text{CH}_2\text{-}8$ proton resonances of δ 4.79 (1H, d , J = 15.9 Hz) and 5.14 (1H, d , J = 15.9 Hz), the strong downfield shift of N-Me protons to δ 2.71 and the resonance of the other protons at lower fields by *ca* 0.1-0.2 ppm. These features together with an extra oxygen atom in the molecular formula of 2 indicate that the two methylene hydrogens in (±)-hypercorinine 1 were replaced by an oxygen atom as part of a lactone fragment in 2.

Structure 2 was finally established by detailed analysis of its ^{13}C NMR and DEPT spectra (Table 1). It revealed

Table 1. ^1H and ^{13}C NMR spectral data (360, 90 MHz, CDCl_3) of **1** and **2**

Atom	δ_{H}		δ_{C}^*	
	1	2	1	2
1	6.52 s	6.61 s	107.9 d	107.7 d
2	—	—	147.6 s	147.1 s
3	—	—	151.9 s	151.0 s
4	6.62 s	6.73 s	108.7 d	108.3 d
4a	—	—	125.6 s	126.4 s
5	3.39 m	3.1–4.0 m	24.7 t	28.1 t
	3.05 m			
6	2.60 m	3.1–4.0 m	45.6 t	46.2 t
	2.93 m			
8	4.79 d (15.9)	—	57.4 t	170.1 s
	5.14 d (15.9)			
8a	—	—	125.2 s	135.0 s
9	—	—	145.7 s	152.8 s
10	—	—	145.7 s	154.3 s
11	6.88 d (8.3)	7.01 d (8.5)	107.9 d	114.5 d
12	7.79 d (8.3)	7.90 d (8.5)	124.1 d	121.0 d
12a	—	—	129.5 s	126.0 s
13	—	—	192.2 s	191.1 s
14	—	—	91.4 s	110.6 s
14a	—	—	123.0 s	125.1 s
N-Me	2.37 s	2.71 s	37.5 q	39.8 q
O-CH ₂ -O	5.88 s	5.99 s	100.9 t	101.0 t
	6.09 s	6.11 s	102.5 t	102.3 t

* ^{13}C multiplicities were determined by DEPT pulse sequence.

the presence of 20 carbon signals and proved the presence of a lactonic carbonyl at δ 170.1, instead of the CH_2 -8 carbon resonance at δ 57.4 in **1**, the strong downfield shift of the C-14 spirocarbon to δ 110.6 and the resonance of the N-Me carbon at a lower field by *ca* 2.5 ppm. The above results, together with the fragment ions at *m/z* 194 [$\text{C}_9\text{H}_6\text{O}_5$]⁺, 188 [$\text{C}_{11}\text{H}_{10}\text{NO}_2$]⁺, 176 [$\text{C}_9\text{H}_4\text{O}_4$]⁺ and 148 [$\text{C}_8\text{H}_4\text{O}_3$]⁺ are consistent with the proposed structure **2** for (\pm)-8-oxohypocorinine.

It should be pointed out that the secoberbine alkaloid, (\pm)-8-oxohypocorinine, is the sixth alkaloid of this structural type isolated from the genus *Hypocoum*. It is closely related to procumbine isolated from *H. procumbens* and *H. leptocarpum* [9, 10]. It is quite likely that **2** results from the *in vivo* enzymatic oxidation of (\pm)-hypocorinine (**1**) and represents another intermediate stage in the biogenetic transformations of protoberberines into other structural types of isoquinoline alkaloids. The present isolation of (\pm)-oxohypocorinine from *H. procumbens* var. *glaucescens* is a further indication that secoberbines may be considered as a characteristic chemotaxonomical feature of the genus *Hypocoum*. Accordingly, it substantiates the taxonomical separation of this genus from the Papaveraceae and treating it as a distinct family, the Hypcoaceae [1].

EXPERIMENTAL

General. Mps: uncorr. $[\alpha]_D^{22}$ and UV spectra were measured in MeOH. IR spectra were recorded in CCl_4 .

EIMS were obtained at 70 eV. ^1H and ^{13}C NMR spectra were recorded in CDCl_3 with TMS as an int. standard. ^{13}C -multiplicities were determined by the DEPT pulse sequence [15]. Analytical and prep. TLC were performed on precoated silica gel GF_{254} plates (0.25 and 1 mm) using $\text{CHCl}_3\text{-MeOH}$ (9:1) and $\text{MeOH-Et}_2\text{NH}$ (4:1), respectively, and spots were detected under UV light at 254 nm and/or by spraying with Dragendorff's or potassium iodoplatinate reagents. CC was done on silica gel, 70–230 mesh.

Plant material. Flowering and fruiting plants of *H. procumbens* L. var. *glaucescens* (Guss.) Moris were collected, in March 1991, from irrigated gardens near to El-Arish, Sinai Peninsula. Identification was kindly verified by Dr I. Mashaly, Department of Botany, Faculty of Science, University of Mansoura.

Extraction and isolation. Air-dried, powdered whole plants (1.115 kg) were exhaustively extracted with 95% EtOH. The alcoholic extract was concd to a syrupy consistency, dissolved in H_2SO_4 (2%, 900 ml), filtered and then defatted with petrol. The acidic filtrate was brought to pH 7.5 with a satd soln of Na_2CO_3 and extracted with Et_2O . The mother liquor was brought to pH 10 with NH_4OH 25% and extracted with $\text{CHCl}_3\text{-15% isoPrOH}$. Evapn of solvents left the crude extracts A (1.3 g) and B (6.8 g), respectively. CC of the Et_2O extract on a silica gel column (2.5 cm i.d., 30 g) eluted with $\text{CHCl}_3\text{-MeOH}$ (99:1) afforded (\pm)-hypocorinine (**1**) (13 mg) and isocorydine (4 mg). CC of the $\text{CHCl}_3\text{-15% isoPrOH}$ extract on a silica gel column (2.5 cm i.d., 150 g) eluted with a $\text{C}_6\text{H}_6\text{-CHCl}_3\text{-MeOH}$ gradient followed by repeated prep. TLC on silica gel F_{254} plates in $\text{MeOH-Et}_2\text{NH}$ (4:1) afforded protopine (2.1 g), cryptopine (5 mg), allocryptopine (18 mg) and (\pm)-8-oxohypocorinine (**2**) (8 mg).

(\pm)-8-Oxohypocorinine (2). Amorphous orange powder. UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm (log ϵ) 224 (4.46), 245sh (4.11), 308 (3.82), 362 (3.80). IR ν^{CCl_4} cm^{-1} : 3090, 2990, 2845, 1665, 1645, 1595, 1490, 1040, 1020, 750. ^1H and ^{13}C NMR (360, 90 MHz, CDCl_3 , 135°): 1 CH_3 , 4 CH_2 , 4 CH , 11 C. EIMS (70 eV) *m/z* (rel. int.): 381 [$\text{M}]^+$ (2.8), (calcd for $\text{C}_{20}\text{H}_{15}\text{NO}_7$, 381.08484), 204 (11), 194 (25), 188 (100), 187 (10), 186 (19), 176 (12), 148 (30).

REFERENCES

1. Tackholm, V. (1974) *Students Flora of Egypt*, 2nd edn, p. 158. Cooperative Printing Company, Beirut.
2. Willis, J. C. (1966) *A Dictionary of the Flowering Plants and Ferns*, 7th edn, p. 569. Cambridge University Press, Cambridge.
3. Šlavík, J. and Šlavíková, L. (1961) *Collect. Czech. Chem. Commun.* **26**, 1472.
4. Gozler, T., Onür, M. A., Minard, R. D. and Shamma, M. (1983) *J. Nat. Prod.* **46**, 414.
5. Gozler, T., Gozler, B., Weiss, I., Freyer, A. J. and Shamma, M. (1984) *J. Am. Chem. Soc.* **106**, 6101.
6. Chen, B. and Fang, Q. (1985) *Yaoxue Xuebao* **20**, 658; *Chem. Abstr.* (1986) **104**, 65907m.

7. Taborska, E., Mikesova, M. and Veznik, F. (1985) *Scripta Med.* **58**, 116.
8. Onür, M. A., Abu Zarga, M. H. and Gozler, T. (1986) *Planta Med.* **52**, 70.
9. Taborska, E., Mikesova, M., Veznik, F. and Šlavík, J. (1987) *Collect. Czech. Chem. Commun.* **52**, 508.
10. Taborska, E., Veznik, F., Slavík, J., Sedmera, P. and Simanek, V. (1988) *Heterocycles* **27**, 39.
11. Saad, H.-E. A., Hassan, M. A., Lahloub, M. F. and Halim, A. F. (1990) *Proceeding of XXI Conference of Pharmaceutical Sciences*, Cairo, Egypt, p. 243.
12. Yakhontova, L. D., Komarova, M. N., Perel'son, M. E., Blinova, K. F. and Tolkachev, O. N. (1972) *Khim. Prir. Soedin* **5** 624, *Chem. Nat. Comps* (1974) 592.
13. Guinaudeau, H., Leboeug, M. and Cavé, A. (1975) *J. Nat. Prod.* **38**, 275.
14. Guinaudeau, H. and Shamma, M. (1982) *J. Nat. Prod.* **45**, 237.
15. Doddrell, D. M., Pegg, D. T. and Bendall, M. R. (1982) *J. Magn. Reson.* **48**, 323.