

SPIROSTAPHYLOTRICHINS U AND V FROM *CURVULARIA PALLESCENS*

WOLF-RAINER ABRAHAM,* HANS-PETER HANSEN† and HANS-ADOLF ARFMANN

GBF—Gesellschaft für Biotechnologische Forschung mbH, Department of Microbiology, Mascheroder Weg 1, D-38124 Braunschweig, Germany; †IMB—Industrielle Mikrobiologie, Lurup 4, D-22927 Großhansdorf, Germany

(Received in revised form 2 September 1994)

Key Word Index—*Curvularia pallescens*; Deuteromycota; Hyphomycetes; phytotoxin; spirostaphylo-trichins U and V; spiro- γ -lactams.

Abstract—The fungus *Curvularia pallescens* DSM 62482 produces spirostaphylo-trichins A, C, D, R, Q and the new spirostaphylo-trichins U and V in submerged culture under limited supply of nitrogen. The configuration of spirostaphylo-trichin R could be determined as the 3,4-cis-diol. For spirostaphylo-trichins U and V, no phytotoxic activity could be detected.

INTRODUCTION

Curvularia pallescens is a Deuteromycete (teleomorph = *Pseudocoelophobolus pallescens*) causing black spot disease on food plants like maize (*Zea mays*), coriander (*Coriandrum sativum*), wheat (*Triticum vulgare*), beans (*Phaseolus* spp.) or garlic (*Allium sativum*) [1]. We used *Curvularia pallescens* DSM 62482 for biotransformations and detected some compounds which are secondary metabolites and were only formed if this strain grew under nitrogen-limited conditions. Here we report on their isolation and structure elucidation.

RESULTS AND DISCUSSION

The least polar product proved to be a mixture of two compounds. ^1H and ^{13}C NMR spectra of this mixture helped to identify these compounds as spirostaphylo-trichins C (2) and D (3) [2]. The reason why we were unable to separate the mixture chromatographically could be seen in the ability of these epimers to interconvert. A base could form the alcoholate of 2 or 3 which opens the six-membered ring by a retro-aldol type reaction. This monocyclic intermediate can undergo an aldol reaction, again yielding both epimers 2 and 3. The ratios of 2 and 3 in the mixtures obtained from the individual fermentations were 1:3 to 1:2, but never 1:1 indicating that racemization is an artifact of isolation. A third metabolite displayed very similar resonances in the NMR spectra (Table 1), but in the ^{13}C NMR spectrum a new resonance at $\delta_{\text{C}} = 64.9$ appeared, while C-3, C-5 and C-12 were deshielded and C-11 was shielded (Table 2). This pointed to a hydroxyl group at C-4. From the literature this compound was identified as spirostaphylo-trichin A (1) [3]. Another spirostaphylo-trichin could be separated

Table 1. ^1H NMR data of spirostaphylo-trichin R (5), U (6) and V (7) (CDCl_3 , 400 MHz)

	5	6	7
4-H	4.10 s	3.82 s	3.81 s
6-H	4.75 s	4.75 s	4.87 s
8-H	5.94 d	5.98 d	5.96 d
9-H	7.10 d	7.04 d	7.07 d
11-H	1.68 s	1.59 s	1.46 s
12-H	6.18 t	6.36 t	6.17 t
13-H	2.20 m	2.26 m	2.29 m
13'-H		2.12 m	2.06 m
14-H	1.04 t	1.07 t	1.08 t
15-H	4.02 s	4.00 s	4.02 s
MeO	—	—	3.43 s

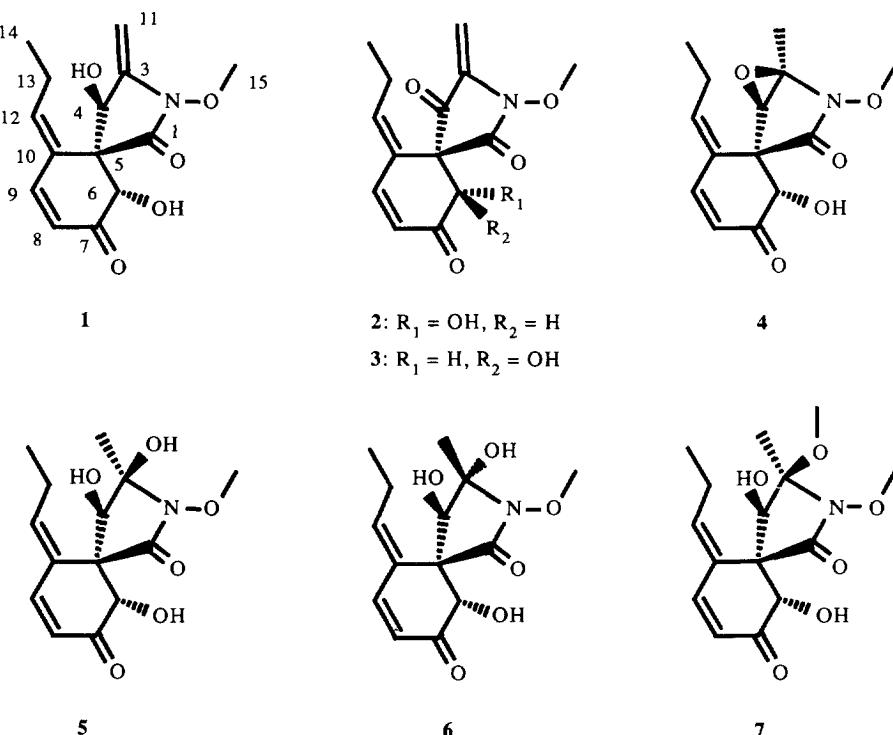
J (Hz): 8,9 = 10; 12,13 = 12,13' = 7;
13,14 = 13'; 14 = 7.

from spirostaphylo-trichin A only with difficulty. The ^1H NMR showed the resonance of a methyl group at $\delta_{\text{H}} = 1.70$ instead of the exomethylene group. The metabolite could be identified from its ^{13}C NMR data as spirostaphylo-trichin Q (4), with its characteristically deshielded resonance of C-11.

The most polar fraction yielded three more spirostaphylo-trichins. Two of them form a pair which we could not separate completely. The ^{13}C NMR data were in agreement with a 3,4-dihydroxy-spirostaphylo-trichin and the minor compound of this mixture was identified as spirostaphylo-trichin R. Unfortunately Sandmeier and Tamm [4], who first identified this spirostaphylo-trichin, could not determine the configuration at C-3 of this compound. The isolation of the isomeric triol, named spirostaphylo-trichin U, and characterization of the methoxy-derivative of one of these isomers, which is the third

*Author to whom correspondence should be addressed.

Table 2. ^{13}C NMR data of spirostaphylotrichins **2**, **3** and **5–7** (CDCl_3 , 75.5 MHz)


	2	3	5	6	7
C-1	164.1 s	165.0 s	167.3 s	166.4 s	166.1 s
C-3	137.3 s	138.2 s	86.6 s	90.5 s	94.8 s
C-4	n.d.	n.d.	68.7 d	73.1 d	68.2 d
C-5	53.8 s	53.8 s	56.7 s	56.7 s	57.4 s
C-6	73.6 d	73.2 d	73.4 d	73.4 d	73.8 d
C-7	194.3 s	194.6 s	197.0 s	195.4 s	197.2 s
C-8	121.6 d	121.5 d	120.8 d	120.0 d	121.4 d
C-9	149.8 d	150.4 d	153.0 d	154.1 d	153.0 d
C-10	128.8 s	127.4 s	128.7 s	127.4 s	128.9 s
C-11	91.8 t	91.9 t	23.7 q	18.7 q	17.0 q
C-12	147.2 d	147.6 d	150.6 d	152.7 d	149.3 d
C-13	24.6 t	22.7 t	23.4 t	23.7 t	23.7 t
C-14	12.7 q	13.1 q	13.4 q	13.1 q	13.4 q
C-15	63.0 q	63.0 q	64.6 q	64.7 q	64.3 q
MeO	—	—	—	—	51.0 q

n.d. = not detected.

compound of this complex and named spirostaphylotrichin V, gave us sufficient data to solve this problem. Spirostaphylotrichin R, U and V all have the 6S-hydroxy group as judged from the shift of 6-H in the ^1H NMR spectrum. To decide which of the triols is *cis*- and which one is *trans*- we compared their ^{13}C NMR resonances with those of (1S,2S)- and (1R,2S)-1,2-dihydroxy-3-menthene we produced in the biotransformation of α -terpinene with *Corynespora cassiicola* DSM 62474 [5]. In

the *cis*-diol of these monoterpenes the adjacent methyl group is deshielded compared to the *trans*-diol ($\delta_{\text{C}} = 24.4$ and $\delta_{\text{C}} = 20.1$), while the resonance of the carbon bearing the secondary alcohol is shifted to higher field in the *cis*-alcohol compared to the *trans*-diol ($\delta_{\text{C}} = 71.8$ and $\delta_{\text{C}} = 74.8$) as C-1 is ($\delta_{\text{C}} = 70.1$ and $\delta_{\text{C}} = 72.7$). With this information in hand we could assign the stereochemistry of spirostaphylotrichin R, U and V. In spirostaphylotrichin R the C-11 methyl group resonated at $\delta_{\text{C}} = 23.7$, C-3 at $\delta_{\text{C}} = 86.6$ and C-4 at $\delta_{\text{C}} = 68.7$, compared to $\delta_{\text{C}} = 18.7$, $\delta_{\text{C}} = 90.5$ and $\delta_{\text{C}} = 73.1$ for spirostaphylotrichin U, respectively. This requires the *cis*-configuration **5** for spirostaphylotrichin R and the *trans*-configuration **6** for spirostaphylotrichin U. This assignment is further corroborated by the fact that in **5** an NOE is observed at 4-H after irradiation at the resonance of 11-H. The same arguments are applicable to the methoxy-ether, so its configuration was determined as **7**. Additionally a shielding of C-11 is observed here caused by the γ -effect of the methoxy group which is very near its predicted value of $\Delta\delta_{\text{C}} = -7$ ppm.

Spirostaphylotrichins U and V are new natural products while the configuration of spirostaphylotrichin R could be clarified. Spirostaphylotrichins A, C, D, Q and R are known from *Staphylotrichum coccosporum* [4]. Spirostaphylotrichins C and D were first isolated from *Drechslera tritici-repentis* (now *Pyrenophaora tritici-repentis*) and named triticone A and B. Later on they were also found in *Curvularia lunata* [6]. Related compounds where the nitrogen is replaced by oxygen were reported from the fungus *Arthropsis truncata* [7]. Spirostaphylotrichin A possesses lipid-lowering activity [8] while

Fig. 1. Spirostaphylotrichins from *Curvularia pallescens* DSM 62482.

spirostaphylotrichins C and D are phytotoxins. The latter inhibit photosynthetic electron transport in chloroplasts [9]. For spirostaphylotrichins U and V we could not find any phytotoxic activity. *Curvularia pallescens* DSM 62482 also produces some metabolites which do not belong to the spirostaphylotrichin group. They are currently under further study.

EXPERIMENTAL

Curvularia pallescens DSM 62482 was grown in 10×1 l flasks filled with 200 ml of the medium containing glucose (10 g), NH_4Cl (0.1 g), K_2HPO_4 (0.5 g), KCl (1 g), $\text{MgSO}_4 \times 7\text{H}_2\text{O}$ (0.2 g), $\text{CaCl}_2 \times 2\text{H}_2\text{O}$ (0.1 g) in 1 l deionized water. After 10 days the culture broth was filtered and extracted $\times 3$ with EtOAc. After drying with Na_2SO_4 the solvent was evapd and the crude extract was sep'd on a Si-60 column with a *n*-hexane/EtOAc gradient (changing from 19:1 to 0:1). When necessary the collected frs were purified further by prep. TLC on silica Si-60.

The ^1H and ^{13}C NMR spectra were obtained at 400 and 75.5 MHz, respectively. CDCl_3 was the solvent and TMS the int. standard. Mass spectra were recorded with 70 eV. IR spectra (DRIFT) were measured on KBr, UV spectra in MeOH.

From 2 l of culture broth **1** (6 mg), **2** and **3** (15 mg), **4** (24 mg), **5** (3 mg), **6** (6 mg) and **7** (5 mg) were obtained.

Spirostaphylotrichin U **6**. Not completely sep'd from **5**. R_f 0.56 (EtOAc). UV: λ_{max} 290 nm. IR: 3385, 1685 cm^{-1} . MS *m/z*: 297.1210 (297.1212 calcd for $\text{C}_{14}\text{H}_{19}\text{NO}_6$) (4%), 279 (35), 224 (100), 177 (47), 149 (52).

Spirostaphylotrichin V **7**. Glassy, yellowish crystals. R_f 0.55 (EtOAc). UV: 289 nm. IR: 3383, 1687 cm^{-1} . MS (*m/z*): 311.1355 (311.1369 calcd for $\text{C}_{15}\text{H}_{21}\text{NO}_6$) (2%), 279 (100), 224 (45), 207 (59), 149 (94).

$$[\alpha]^{27} = \frac{589 \text{ nm} \quad 578 \text{ nm} \quad 546 \text{ nm}}{-147.6^\circ \quad -151.2^\circ \quad -155.0^\circ} (c = 0.50)$$

REFERENCES

1. Agarwal, G. P., Awasthy, S. and Thakur, M. K. (1981) *Natl. Acad. Sci. Lett. (India)* **4**, 115.
2. Sugawara, F., Takahashi, N., Strobel, G. A., Strobel, S. A., Lu, H. S. M. and Clardy, J. (1988) *J. Am. Chem. Soc.* **110**, 4086.
3. Sandmeier, P. and Tamm, C. (1989) *Helv. Chim. Acta* **72**, 774.
4. Sandmeier, P. and Tamm, C. (1989) *Helv. Chim. Acta* **72**, 784.
5. Abraham, W.-R., Stumpf, B. and Kieslich, K. (1986) *Appl. Microbiol. Biotechnol.* **24**, 24.
6. Strobel, G., Kenfield, D., Bunkers, G., Sugawara, F. and Clardy, J. (1991) *Experientia* **47**, 819.
7. Ayer, W. A., Craw, P. A. and Neary, J. (1992) *Can. J. Chem.* **70**, 1338.
8. Peter, H. and Auden, J. A. L., 2.1.1986 *Deutsche Offenlegungsschrift*, DE 35 22 578 A1.
9. Kenfield, D. S., Strobel, S., Sugawara, F., Berglund, D. and Strobel, G. A. (1988) *Biochem. Biophys. Res. Commun.* **157**, 174.