

CO-OCCURRENCE OF PRENYLATED XANTHONES AND THEIR CYCLIZATION PRODUCTS IN CELL SUSPENSION CULTURES OF *HYPERICUM PATULUM**

KYOKO ISHIGURO, MARIKO NAKAJIMA, HISAE FUKUMOTO and KOICHIRO ISOI†

Faculty of Pharmaceutical Sciences, Mukogawa Women's University, Koshien Kyuban-cho, Nishinomiya, Hyogo 663, Japan

(Received in revised form 5 August 1994)

Key Word Index—*Hypericum patulum*; Guttiferae; xanthones; 5,9,11-trihydroxy-3,3-dimethyl-8-(3-methyl-2-but enyl)-3H,12H-pyrano[3,2-a]xanthen-12-one; garcinone B; 1,3,6,7-tetrahydroxy-8-(3-methyl-2-but enyl)-9H-xanthen-9-one; cell suspension cultures; elicitation.

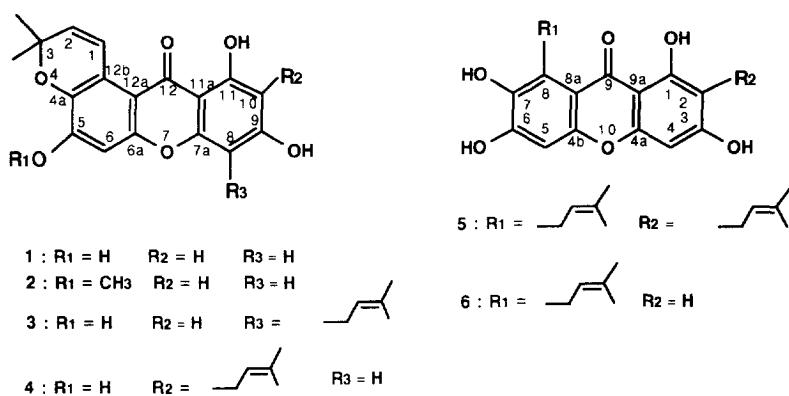
Abstract—A new xanthone named paxanthone B, 5,9,11-trihydroxy-3,3-dimethyl-8-(3-methyl-2-but enyl)-3H,12H-pyrano[3,2-a]xanthen-12-one, has been isolated from callus tissues of *Hypericum patulum*, together with the known garcinone B and 1,3,6,7-tetrahydroxy-8-(3-methyl-2-but enyl)-9H-xanthen-9-one. Their structures were elucidated using spectral techniques.

INTRODUCTION

In our preceding communication, we reported the isolation and structural determination of paxanthone (2), toxylo xanthone B (1) and γ -mangostin (5) in cell suspension cultures of *Hypericum patulum* [1]. A further investigation of the methanol extract from the callus tissues has now provided three xanthones, including a new xanthone, paxanthone B (3). Of the three identified xanthones, two, i.e. garcinone B (4) from *Garcinia mangostana* (Guttiferae) [2] and 1,3,6,7-tetrahydroxy-8-(3-methyl-2-but enyl)-9H-xanthen-9-one (6) from *H. androsaemum* [3], have previously been recognized as natural products. These xanthones are distinguished by mono- or di-prenylation, or by the presence of a dimethyl chromene ring.

Cyclization of the prenyl side-chain to an adjacent hydroxyl group could lead to the corresponding dimethyl chromene derivatives. The co-occurrence of 6, 1 and 2 is of biogenetic interest, 6 may act as a precursor for 1 and 2. Also, 5 and 4 are interrelated in that cyclization of the prenyl side (3,3-dimethyl allyl)-chain of 5 with the neighbouring phenolic hydroxyl group results in the formation of 4. Probable biogenetic relationships between the prenylated xanthones and their dimethyl chromene derivatives are briefly discussed.

RESULTS AND DISCUSSION


Callus tissue cultures were established from flowers of *H. patulum* and cultured in the dark on Linsmaier-Skoog

medium containing 2,4-D and kinetin. Dried callus tissues were extracted with methanol. The methanol extract was dissolved in a small amount of water and partitioned between ethyl acetate and water. Three compounds, 3, 4 and 6 were isolated from the ethyl acetate fraction by flash chromatography followed by recrystallization.

Compound 3 gave a peak at *m/z* 394 in the positive EI-mass spectrum. The IR spectrum suggested the presence of phenolic hydroxyl groups (3420 cm^{-1}) and a hydrogen bonded carbonyl group (1630 and 1610 cm^{-1}). The UV spectrum (244, 266, 315, 326sh, 383, 397sh nm) was that of an angular chromenoxanthone [4]. The ^1H NMR spectrum of 3 showed the presence of a 3,3-dimethylallyl substituent, which was confirmed by two singlets at δ 1.65 and 1.88 for the vinyl methyls, a triplet at δ 5.29 (1H) for the vinylic proton and a doublet at δ 3.49 (2H) for the benzylic protons. Furthermore, the two aromatic proton signals and a hydrogen bonded hydroxyl signal appeared as three singlets at δ 6.30 (H-10), 6.88 (H-6) and 13.30 (OH-11). The signals at δ 1.47 (6H, *s*), 5.93 (1H, *d*) and 8.07 (1H, *d*) in the spectrum were indicative of a 2,2-dimethyl pyran ring. The angular fusion of the chromene ring was deduced from the low field shift [5] of H-1 (δ 8.07), which is located in the deshielding area of the carbonyl group. Therefore, the possible structure of this compound was 3 or 4. The spectral features of 3, however, differed from the reported data of garcinone B (4) [2]. The chemical shift values of C-10 in the ^{13}C NMR spectra for paxanthone (2) and toxylo xanthone B (1) were δ 99.0 and 98.8, respectively, and those of C-8 were δ 94.0 in both compounds [1]. In the ^{13}C NMR spectrum of γ -mangostin (5), the signal at δ 93.0 was assigned to the unsubstituted C-4, and the signal due to the prenylated C-2 appeared at δ 111.3 in the same benzene ring [1]. On the basis of the above results, the signal at δ 98.4 of paxanthone B could be

* Part 2 in the series 'Xanthones in cell suspension cultures of *hypericum patulum*.' For Part 1, see ref. [1].

† Author to whom correspondence should be addressed.

assigned to the unsubstituted carbon (C-10), indicating that a prenyl group was located at C-8. Hence, paxanthone B can be concluded to have structure 3.

The other compounds, **4** and **6**, were identical with garcinone B [2] and 1,3,6,7-tetrahydroxy-8-(3-methyl-2-butenyl)-9H-xanthene-9-one [3], respectively, by comparison of their spectral data. Although they have been isolated from *G. mangostana* and *H. androsaemum*, respectively, these compounds have been isolated from cell suspension cultures of *H. patulum* for the first time.

HPLC protocols give high resolution chromatograms to allow the simultaneous analysis of the six xanthones (**1-6**) in unfractionated extracts (see Experimental). The methods are simple, sensitive and highly reproducible. The examination of such profiles over time would provide a highly dramatic view of the many concurrent molecular events which may relate to biological phenomena. Monoisoprenyl xanthones, 1,3,6,7-tetrahydroxy-8-prenyl xanthone, toxyloanthone B and paxanthone, have *R*_fs of 9.6–15.9 min. Diisoprenyl derivatives, paxanthone B, γ -mangostin and garcinone B, have *R*_fs of 29.0–39.6 min. Among two groups of xanthones, the dimethyl chromene derivatives, toxyloanthone B and garcinone B, have longer *R*_fs than their corresponding prenylated xanthones.

We now have the experimental tools to determine the levels of xanthones and their metabolic shifts induced by yeast elicitor (YE) (0.1 g 300 mol⁻¹) for 19 days of growth phase. Respective changes of the ratios of the integration units for the peak area at 262 nm between **6** and **2** (4:1), and that of the pair **5/4** (8.5:1), to (0.8:1) and (2.5:1) indicate that treatment of cultures with YE resulted in reductions of **6** and **5**, with a concomitant increase in **1** and **4** of *R*_fs of 10.7 and 39.6 min. These results show that the cyclization of the isoprenyl side-chain or the activation of cyclases are stimulated in response to environmental stress.

The elicitor-mediated induction or activation of cyclase which catalyses the transformation of prenyl to chromene, has been described in soybean tissue cultures [6, 7]. By analogy to glyceollin formation from its prenylated precursor, it seems likely that the conversion of the prenylated xanthones, **6** and **5** to **1** and **4**, respectively, involves cytochrome P450-dependent monooxygenase.

EXPERIMENTAL

Plant material. *Hypericum patulum* Thunb. was planted in our university medicinal plant garden and identified by Dr G. Yoneda (Faculty of Pharmaceutical Sciences, Osaka University). A voucher specimen is kept in our laboratory. Callus tissue cultures were established from flowers cultured in the dark on Linsmaier–Skoog medium containing 10⁻⁵ M 2,4-D and 10⁻⁷ M kinetin.

Extraction and isolation. Dried callus tissues (dry wt 525.8 g) were extracted with MeOH. The MeOH extract (185.7 g) was partitioned between EtOAc and H₂O. The EtOAc fr. (11.6 g) was subjected to repeated flash CC on silica gel using CHCl₃–MeOH and benzene–EtOAc gradient systems followed by LH-20 with MeOH to afford **3** (3.1 mg), **4** (2.2 mg) and **6** (6.5 mg).

Paxanthone B (**3**). Yellow needles, mp 239–241° (benzene–Me₂CO). Positive EIMS: *m/z* 394 [M]⁺. IR $\nu_{\text{max}}^{\text{KBr}}$ cm⁻¹: 3420, 2950, 2900, 1630, 1610, 1570, 1490, 1450, 1420. UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm (log ϵ): 244 (4.35), 266 (4.38), 315 (4.21), 326 (4.22), 383 (3.71), 397sh (3.69). ¹H NMR [500 MHz, (CD₃)₂CO]: δ 1.47 (6H, s, 2 \times Me), 1.65 (3H, s, Me-16), 1.88 (3H, s, Me-17), 3.49 (2H, d, *J* = 7.3 Hz, H-13), 5.29 (1H, t, *J* = 7.3 Hz, H-14), 5.93 (1H, d, *J* = 10.4 Hz, H-2), 6.30 (1H, s, H-10), 6.88 (1H, s, H-6), 8.07 (1H, d, *J* = 10.4 Hz, H-1), 13.30 (1H, s, OH). ¹³C NMR [125 MHz, (CD₃)₂CO]: δ 18.0 (Me, C-16), 22.2 (C-13), 25.9 (Me, C-17), 27.2 (2 \times Me, C-3), 76.8 (C-3), 98.4 (C-10), 103.5 (C-6), 104.1 (C-11a), 106.5 (C-8), 108.3 (C-12a), 120.9 (C-12b), 121.6 (C-1), 123.5 (C-14), 131.6 (C-15), 133.5 (C-2), 138.9 (C-4a), 153.8 (C-6a), 154.2 (C-7a), 155.3 (C-5), 162.4 (C-9), 162.9 (C-11), 183.4 (C-12).

Garcinone B (**4**). Yellow needles, mp 185–187° (benzene–Me₂CO). Positive EIMS: *m/z* 394 [M]⁺. IR $\nu_{\text{max}}^{\text{KBr}}$ cm⁻¹: 3450, 3050, 2900, 1645, 1625, 1595, 1570, 1490, 1450, 1410. UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm (log ϵ): 243 (4.42), 263 (4.42), 316 (4.29), 323 sh (4.29), 332 (4.31), 378 (3.71), 394sh (3.68). ¹H NMR [500 MHz, (CD₃)₂CO]: δ 1.46 (6H, s, 2 \times Me), 1.65 (3H, s, Me-16), 1.78 (3H, s, Me-17), 3.36 (2H, d, *J* = 7.3 Hz, H-13), 5.29 (1H, t, *J* = 7.3 Hz, H-14), 5.93 (1H, d, *J* = 10.4 Hz, H-2), 6.42 (1H, s, H-8), 6.80 (1H, s, H-6), 8.07 (1H, d, *J* = 10.4 Hz, H-1), 9.30 (2H, s, OH), 13.67 (1H, s, OH-11).

1,3,6,7-Tetrahydroxy-8-(3-methyl-2-butenyl)-9H-xanthene-9-one (**6**). Yellow powder, mp 203–206° (benzene–

Me_2CO). EIMS: m/z 328 [$\text{M}]^+$. IR $\nu_{\text{max}}^{\text{KBr}} \text{cm}^{-1}$: 3400–3300, 2970, 2900, 1650, 1605, 1570, 1500. UV $\lambda_{\text{max}}^{\text{MeOH}} \text{nm}$ (log ϵ): 240 (4.40), 254 (4.48), 305 (4.28), 360 (3.95). ^1H NMR [500 MHz, $(\text{CD}_3)_2\text{CO}$]: δ 1.64 (3H, s, Me-14), 1.84 (3H, s, Me-15), 4.18 (2H, d, J = 6.7 Hz, H-11), 5.33 (1H, t, J = 6.7 Hz, H-12), 6.17 (1H, d, J = 1.8 Hz, H-2), 6.28 (1H, d, J = 1.8 Hz, H-4), 6.79 (1H, s, H-5), 13.70 (1H, s, OH). ^{13}C NMR [125 MHz, $(\text{CD}_3)_2\text{CO}$]: δ 18.3 (Me, C-15), 26.0 (Me, C-14), 26.4 (C-11), 93.7 (C-4), 98.5 (C-2), 101.2 (C-5), 103.9 (C-9a), 111.4 (C-8a), 124.7 (C-12), 128.3 (C-8), 131.2 (C-13), 142.3 (C-7), 154.0 (C-4b), 154.0 (C-6), 158.1 (C-4a), 164.6 (C-1), 165.0 (C-3), 183.1 (C-9).

HPLC analysis. Cells were harvested 19 days after addition of yeast elicitor. Dried callus tissues were extracted with CHCl_3 . The CHCl_3 extract was evapd to dryness under red. pres. and then dissolved in MeOH. The MeOH soln was filtered and the filtrate used directly for HPLC. Injections of 5 μl were made on a reverse-phase column (μ -Bondasphere RP-18, 3.9 mm i.d. \times 150 mm 5 μm particle size, Waters). Chromatography was achieved using MeOH–5% aq. HOAc, gradient from

68 to 75% MeOH in 10 min. A flow rate of 0.9 ml min^{-1} was used. Spectrophotometric detection was at 262 nm. Under these conditions, base line resolution was achieved on all of the metabolites of interest.

REFERENCES

1. Ishiguro, K., Fukumoto, H., Nakajima, M. and Isoi, K. (1993) *Phytochemistry* **33**, 839.
2. Sen, A. K., Sarkar, K. K., Majumder, P. C. and Banerji, N. (1980) *Ind. J. Chem.* **19B**, 1008.
3. Nielsen, H. and Arends, P. (1979) *J. Nat. Prod.* **42**, 301.
4. Deshpande, V. H., Rama Rao, A. V., Varadan, M. and Venkataraman, K. (1973) *Ind. J. Chem.* **11**, 518.
5. Goncalves De Oliveria, W., Gottlieb, O. R. and Lins Mesquita, A. A. (1972) *Phytochemistry* **11**, 3323.
6. Welle, R. and Grisebach, H. (1988) *Arch. Biochem. Biophys.* **263**, 191.
7. Kochs, G. and Grisebach, H. (1989) *Arch. Biochem. Biophys.* **273**, 543.