

IRIDOID GLUCOSIDES FROM *AVICENNIA GERMINANS*

MARIE-THÉRÈSE FAUVEL* ANNE BOUSQUET-MELOU,† CLAUDE MOULIS,† JACQUELINE GLEYET and SØREN ROSENDAL JENSEN‡

Institut de la Carte Internationale de la Végétation, 39 Allées Jules Guesde, F-31062 Toulouse, France; †EA820 "Substances naturelles à visée antiparasitaire" Faculté des Sciences Pharmaceutiques 35 chemin des Maraîchers, F-31062 Toulouse, France;

‡Department of Organic Chemistry, Technical University of Denmark, DK-2800 Lyngby, Denmark

(Received 7 July 1994)

Key Word Index—*Avicennia germinans*; Avicenniaceae/Verbenaceae; iridoid glucosides; 2'-cinnamoyl mussaenosidic acid; 2'-caffeoyle mussaenosidic acid; verbascoside.

Abstract—A new iridoid glucoside, namely 2'-caffeoyle mussaenosidic acid has been isolated from leaves of *Avicennia germinans* along with the known compounds 2'-cinnamoyl mussaenosidic acid and verbascoside. The structure of the new compound was established by spectroscopic methods.

INTRODUCTION

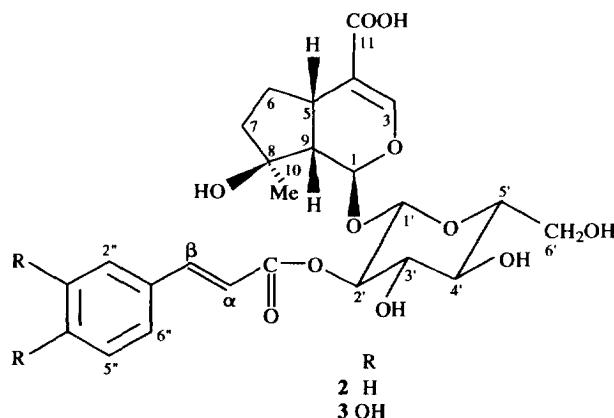
The systematics of the mangrove genus *Avicennia* has been controversial for a long time, mainly with regard to its relationship to other taxa. The genus is now better known [1], particularly with regard to the Australasian species [2], and some contemporary botanists consider *Avicennia*, with about 14 species, to be a member of the family Verbenaceae [3] although others have a different opinion [4].

The distribution of iridoids and compounds similar to verbascoside have been shown to be chemotaxononomically useful characters [5-7], and since iridoid glucosides have been reported from *A. officinalis* [4] and *A. marina* [8], we have now investigated *A. germinans* (L.) Stearn from Guyana for the presence of glucosides.

RESULTS AND DISCUSSION

The crude aqueous extract of the plant showed the presence of several compounds although in very small amounts. After extensive chromatographic separation (see Experimental) three compounds were obtained in the pure state. One compound was proved by comparison with an authentic specimen to be the known caffeic ester derivative verbascoside (**1**), earlier reported from *A. marina* [9]. The NMR spectra of the other compounds, **2** and **3**, showed signals characteristic of an iridoid glucoside esterified with an aromatic acid. The NMR spectra of **2** proved to be almost identical with those reported [8] for 2'-cinnamoyl-mussaenoside except for the presence of the

methyl group present in the latter. Compound **2** is thus 2'-cinnamoyl mussaenosidic acid, and this compound has earlier been reported from *A. officinalis* [4] and *A. marina* [8].


The ¹H NMR spectrum of **3** was similar to that of **2**, except for a difference in the aromatic signals, which signified the presence of a caffeoyle moiety in **3**. This was confirmed by the ¹³C NMR spectrum, where a caffeoyle moiety could be distinguished together with signals corresponding to the aglucone of mussaenosidic acid [7]. The remaining six signals from a substituted β -glucopyranosyl moiety were almost identical with those found for **2** with the diagnostic downfield shift of 1.3 ppm for C-2' and upfield shifts of 2.0 and 3.2 ppm, respectively, for C-1' and C-3' when compared to the spectrum of mussaenoside [7]. This proves that the caffeoic acid is esterified with the C-2' oxygen of the mussaenosidic acid moiety in **3**. Characteristically, the H-2' signal in both **2** and **3** is found at δ 4.8, *ca* 1.6 ppm downfield from the usual position of this proton. To our knowledge, this is the first report of 2'-caffeoyle mussaenosidic acid.

Iridoids are very useful taxonomic markers and the chemical relationship between *Avicennia* and other taxa in Lamianae is confirmed by this character and by the presence of verbascoside in the genus.

EXPERIMENTAL

General. IR: KBr disks; MS: Nermag R-10-10 by DCI with NH₃ or FAB; ¹H and ¹³C NMR: 250 and 62.5 MHz, respectively, in CD₃OD, using the solvent peaks at δ 3.31 and 4.90 as standards. Leaves of *Avicennia germinans* were collected in the mangrove (Cayenne) in Guyana. A

* Author to whom correspondence should be addressed.

voucher specimen (No. 2076) was identified by Dr F. Blasco and is deposited in the Herbarium of the Institute for the International Map of the Vegetation (France).

Dry leaves (500 g) were successively extracted with H_2O and MeOH (70%) and the extracts combined and lyophilized followed by chromatography on a XAD_4 column. The fr. (6 g) eluted with H_2O - MeOH was rechromatographed on silica gel eluting successively with CH_2Cl_2 - MeOH (4:1), CH_2Cl_2 - MeOH - H_2O (40:10:1) and CH_2Cl_2 - MeOH - H_2O (80:20:3). The first fr. contained **2** (162 mg), the following two frs were mixts of verbascoside (**1**) and **3** (213 mg). Rechromatography on a polyamide column with a gradient of H_2O - MeOH (0-100% MeOH) gave 2'-cinnamoyl mussaenosidic acid (**2**) (31 mg) in the (1:1) fractions, while the mixt. of **1** and **3** was chromatographed with water on Sephadex LH 20 and yielded **1** (15 mg), 2'-caffeooyl mussaenosidic acid **3** (18 mg) was eluted with H_2O - MeOH (7:3). A final purification on a RP_{18} Bond Elut cartridge was performed with a gradient of H_2O - MeOH .

2'-*Cinnamoyl* *mussaenosidic acid* (2) Syrup. IR $\nu_{\text{max}}^{\text{neat}}$ cm⁻¹: 1628 (CO₂H) and 1698 (ester C=O); MS, positive FAB, glycerol matrix (*m/z*): 539 [M + Na]⁺. ¹H NMR (only significant H's): δ 7.85 (*d*, *J* = 16 Hz, b-H), 7.78 (2H, arom.), 7.39 (3H, arom.), 7.28 (*s*, H-3), 6.45 (*d*, *J* = 16 Hz, a-H), 5.49 (*d*, *J* = 3 Hz, H-1), 4.9 (*d*, partly covered by HDO, H-1'), 4.81 (*t*, *J* = 8 Hz, H-2'), 1.27 (*s*, Me-10), close to the values reported for the methyl ester [8], except for the value given for H-3 (*d*, 6.3), which is apparently a misprint. ¹³C NMR: 895.2 (C-1), 148.6 (C-3), 114.2 (C-4), 31.4 (C-5), 30.3 (C-6), 41.4 (C-7), 79.9 (C-8), 52.6 (C-9), 24.4 (C-10), 170.2 (C-11), 97.8 (C-1'), 76.0 (C-2'), 75.0 (C-3'), 71.8 (C-4'), 78.6 (C-5'), 62.8 (C-6'), 167.6 (CO''), 118.8 (C-a''), 148.6 (C-b''), 136.0 (C-1''), 130.0 (C-2'', C-6''), 129.4 (C-3'', C-5''), 131.4 (C-4''). Methyl ester: MS *m/z*, DCI, NH₃; 538 [M + NH₄]⁺.

2'-Caffeoyl mussaenosidic acid (3). Syrup. UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm: 329; IR $\nu_{\text{max}}^{\text{neat}}$ cm^{-1} : 1628 (CO_2H) and 1698 (ester C=O);

MS, DCI NH₃ (m/z): 556 [M + NH₄]⁺, 521 [M - H₂O]⁺. ¹H NMR: δ 7.51 (d, J = 16 Hz, β-H), 7.27 (s, H-3), 7.03 (d, J = 2 Hz, H-2'), 6.93 (dd, J = 2 and 8 Hz, H-6''), 6.77 (d, J = 8 Hz, H-5''), 6.20 (d, J = 16 Hz, α-H), 5.47 (d, J = 3 Hz, H-1), 4.9 (covered by HDO, H-1'), 4.83 (t, J = 9 Hz, H-2'), 3.3–4.0 (5H, C-3'–C-6'), 3.0 (m, H-5), 2.2 (2H, H-9 and H-7), 1.3–1.7 (3H, H-7 and 2 × H-6), 1.27 (s, Me-10); ¹³C NMR: δ 95.1 (C-1), 151.2 (C-3), 114.2 (C-4), 31.5 (C-5), 30.3 (C-6), 41.3 (C-7), 80.0 (C-8), 52.6 (C-9), 24.4 (C-10), 170.4 (C-11), 97.8 (C-1'), 76.1 (C-2'), 74.8 (C-3''), 71.8 (C-4''), 78.6 (C-5''), 62.8 (C-6''), 168.2 (CO''), 115.1 (C-α''), 147.2 (C-b''), 128.0 (C-1''), 115.4 (C-2''), 146.7 (C-3''), 148.5 (C-4''), 116.5 (C-5''), 123.0 (C-6'').

Acknowledgements—We thank Prof. Horst Rimpler (Institut für Pharmazeutische Biology), for his advice. We also thank Dr Tran le Trang (Service Résonnance Magnétique Nucléaire, Université Paul Sabatier Toulouse) for performing ^1H and ^{13}C NMR spectral measurements.

REFERENCES

1. Chapman, V. J. (1976) in *Mangrove Vegetation* (Cramer, J., ed.) p. 447. J. Cramer, Vaduz, Liechtenstein.
2. Duke, N. C. (1991) *Aust. Syst. Bot.* **4**, 229.
3. Mabberly, D. J. (1987) *The Plant-Book*. Cambridge University Press. Cambridge.
4. König, G., Rimpler, H. and Hunkler, D. (1987) *Phytochemistry* **26**, 423.
5. Hegnauer, R. and Kooiman, P. (1978) *Planta Med.* **33**, 1.
6. Rimpler, H. and Sauerbier, H. (1986) *Biochem. Syst. & Ecol.* **14**, 307.
7. Jensen, S. R. (1992) *Ann. Missouri Bot. Gard.* **79**, 284.
8. König, G. and Rimpler, H. (1985) *Phytochemistry* **24**, 1245.
9. Fauvel, M. T., Taoubi, K., Gleye, J. and Fourasté, I. (1993) *Planta Med.* **59**, 387.