

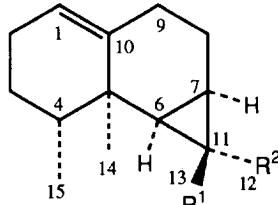
REVISION OF THE STRUCTURE OF AN ARISTOLANE SESQUITERPENE ALDEHYDE ISOLATED FROM THE ROOT OF *PLECTRANTHUS HEREROENSIS* AND *ARISTOLOCHIA DEBILIS*

BENJAMÍN RODRÍGUEZ,* MARÍA C. DE LA TORRE, FATIMA SIMOES,† OLGA BATISTA,† JOSÉ NASCIMENTO,†
 AIDA DUARTE† and RALF MAYER‡

Instituto de Química Orgánica, CSIC, Juan de la Cierva 3, 28006 Madrid, Spain; †Faculdade de Farmácia da Universidade de Lisboa, Av. das Forças Armadas, 1600 Lisboa, Portugal; ‡Pharmazeutisches Institut, Universität Bonn, Kreuzbergweg 26, 53115 Bonn, Germany

(Received 7 July 1994)

Key Word Index—*Plectranthus hereroensis*; Labiate; *Aristolochia debilis*; Aristolochiaceae; sesquiterpene; aristolane; 1(10)-aristolen-13-al; structure revision; antimicrobial activity.


Abstract—From the acetone extract of the root of *Plectranthus hereroensis* an aristolane sesquiterpene aldehyde has been isolated. This substance was identical to a compound previously isolated from the root of *Aristolochia debilis* to which the structure of 1(10)-aristolen-12-al was attributed. Now, extensive NMR spectroscopic studies have established that the structure of this substance must be amended to 1(10)-aristolen-13-al. This sesquiterpene showed moderate antimicrobial activity.

INTRODUCTION

In a previous communication [1] we reported the isolation of some abietane diterpenes possessing antimicrobial activity from the acetone extract of the root of *Plectranthus hereroensis*. Now, a study of the less polar chromatographic fractions of the same extract have allowed the isolation of a substance whose physical (mp) and spectroscopic (IR, ^1H and ^{13}C NMR and mass spectral) data were identical to those reported [2] for an aristolane sesquiterpene aldehyde previously found in the root of *Aristolochia debilis*. The structure attributed to this substance,§ 1(10)-aristolen-12-al (1) [2], must be amended to 1(10)-aristolen-13-al (2) on the basis of extensive NOE experiments reported below.

RESULTS AND DISCUSSION

The complete and unambiguous assignment of the proton and carbon resonances of 2 is summarized in Table 1. These data were in agreement with the ^1H - ^1H COSY and HMQC spectra of 2 collected in Table 2. These assignments are almost identical to those reported previously [2], except for the resonances of C-2 and C-3, which must be reversed (see Tables 1 and 2), and for the proton at δ 2.43, previously attributed to one of the C-8 methylene protons [2] and now assigned to the H-9 α

	R ¹	R ²
1	Me	CHO
2	CHO	Me

proton. Apart from the observed connectivities (Table 2), this last reassignment was rigorously supported by double resonance experiments, because an allylic coupling ($J = 2.1$ Hz) observed between the proton at δ 2.43 and the C-1 olefinic proton (δ 5.35) disappeared when the signal of the H-9 α or H-1 protons was irradiated. Moreover, irradiation at δ 1.75 (H-7 α proton) caused modifications only in the signals at δ 1.48 (H-6 α), 2.17 (H-8 α) and 1.98 (H-8 β), thus confirming that the proton appearing at δ 2.43 was not attached to the C-8 methylene carbon.

Exhaustive NOE experiments (Table 3) on 2 allowed the assignment of both protons at the C-8 and C-9 methylene groups and provided conclusive proof on the *endo*-configuration of the aldehyde group, which must be placed at C-13 (2) instead of the C-12 *exo* position

*Author to whom correspondence should be addressed.

§For aristolanes we use the numbering system proposed by Connolly and Hill [3], which differs from that used in ref. [2].

Table 1. ^1H and ^{13}C NMR spectral data of **2***

H	C	
1	5.35 <i>quint</i>	($J_{1,2} = 4.4$)
2 α	1.98 <i>m</i>	($J_{1,2} = 4.9$)
2 β	1.98 <i>m</i>	($J_{1,9\alpha} = 2.1$)
3 α	1.45 <i>m</i>	($J_{6\alpha,7\alpha} = 9.1$)
3 β	1.45 <i>m</i>	($J_{7\alpha,8\alpha} = 9.8$)
4 β	1.36 <i>m</i>	($J_{7\alpha,8\beta} = 3.1$)
6 α	1.48 <i>d</i>	($J_{8\alpha,8\beta} = 14.2$)
7 α	1.75 <i>ddd</i>	($J_{8\alpha,9\alpha} = 8.6$) ^a
8 α	2.17 <i>dddd</i>	($J_{8\alpha,9\beta} = 6.8$) ^a
8 β	1.98 <i>m</i>	($J_{15,4\beta} = 6.5$)
9 α	2.43 <i>m</i>	
9 β	1.98 <i>m</i>	
Me-12	1.13 <i>s</i>	
13	9.58 <i>s</i>	
Me-14	1.19 <i>s</i>	
Me-15	0.94 <i>d</i>	

*At 500 MHz (^1H) and 125.7 MHz (^{13}C), both in CDCl_3 solution. Chemical shifts are relative to the residual CHCl_3 (δ 7.25 for the ^1H NMR spectrum) and to the solvent (δ_{CDCl_3} 77.00 for the ^{13}C NMR spectrum). All these assignments were in agreement with double resonance and NOE experiments and the HMQC spectrum (see discussion and Tables 2 and 3).

^aMultiplicities were determined from the HMQC spectrum (Table 2).

^{*}Interchangeable assignments.

previously proposed (**1**) [2]. Irradiation at δ 9.58 caused positive NOE enhancement in the signals of the H-1, H-4 β , H-8 β and Me-12 protons, but not in those corresponding to the cyclopropane (H-6 α and H-7 α , Table 3), thus establishing that the aldehyde group possesses an *endo*-configuration. On the contrary, irradiation at δ 1.13 (Me-12, geminal to the aldehyde group) produced positive NOE enhancement only in the cyclopropane protons (H-6 α and H-7 α) and in the aldehyde hydrogen (H-13);

consequently Me-12 has an *exo*-configuration. Moreover, irradiation at δ 2.17 (H-8 α) caused positive NOE enhancement in the H-7 α , H-8 β , H-9 α and H-9 β protons and a negative NOE enhancement in the signal of the aldehyde proton (H-13) as a consequence of the transference of the NOE through the H-8 β proton. The remaining NOE experiments shown in Table 3 further supported the relative stereochemistry depicted in **2** for this aristolane sesquiterpene (e.g., the assignment of the signal at δ 2.43 to the H-9 α proton, which showed a positive NOE with the Me-14 group).

It is reasonable to assume that in **2** there is a preferred rotamer for the *endo*-aldehyde group owing to the electrostatic repulsion between the C-1/C-10 olefinic double bond and the oxygen atom of the aldehyde. This preferred rotamer, with the aldehyde hydrogen close to the olefinic bond (*endo*-conformation), precludes the *W*-coupling of the aldehyde proton (sharp singlet signal) with the H-6 α and H-7 α cyclopropane protons, thus explaining the mistake in the structure **1** previously attributed to this sesquiterpenoid [2].

From all the above data it is evident that the substance previously isolated from *Aristolochia debilis* [2] and now found in *Plectranthus hereroensis* possesses the structure depicted in **2**, with the aldehyde group in an *endo*-configuration (C-13).

1(10)-Aristolen-13-al (**2**) showed moderate antimicrobial activity against *Staphylococcus aureus* by the bioautography method [4, 5] (see Experimental).

EXPERIMENTAL

Mp: uncorr. For details on the extraction of *Plectranthus hereroensis* see ref. [1].

Isolation of 1(10)-aristolen-13-al (2). The residue of the least polar chromatographic frs of the acetone extract of the root of *P. hereoensis* (frs eluted with petrol-EtOAc, 19:1, 105 mg) was subjected to CC (silica gel Merck No. 7734, deactivated with 15% H_2O , 40 g)

Table 2. ^1H - ^1H COSY and HMQC correlations in **2**

H (δ)	^1H - ^1H COSY		HMQC Correlated with δ (carbon)
	Correlated with δ (proton)		
1 (5.35)	1.98 (2 α ,2 β), 2.43 (9 α)*†		122.1 (1)
2 α ,2 β (1.98)‡	1.45 (3 α ,3 β), 5.35 (1)		25.4 (2)†
3 α ,3 β (1.45)‡	1.98 (2 α ,2 β), 1.36 (4 β)		26.9 (3)†
4 β (1.36)	1.45 (3 α ,3 β), 0.94 (Me-15)		40.4 (4)
6 α (1.48)	1.75 (7 α)		44.8 (6)
7 α (1.75)	1.48 (6 α), 1.98 (8 β)†, 2.17 (8 α)		30.8 (7)
8 α (2.17)	1.75 (7 α), 1.98 (8 β ,9 β), 2.43 (9 α)†		20.9 (8)
9 α (2.43)	1.98 (8 β ,9 β), 2.17 (8 α), 5.35 (1)*		28.9 (9)
Me-12 (1.13)	9.58 (13)*		19.7 (12)
13 (9.58)	1.13 (Me-12)*		205.0 (13)
Me-15 (0.94)	1.36 (4 β)		15.9 (15)

*Long-range coupling.

†Reassigned signals with respect to those reported in ref. [2].

‡Interchangeable assignments in ref. [2].

Table 3. NOE experiments on **2***

Irradiation at δ (proton)	Observed NOE enhancement†												
	H-1	H-3 α	H-4 β	H-6 α	H-7 α	H-8 α	H-8 β	H-9 α	H-9 β	Me-12	Me-13	Me-14	Me-15
1.48 (H-6 α)	0	0	0	(+ + +)	0	0	0	0	(+ +)	0	(+ +)	(+ +)	(+ +)
1.75 (H-7 α)	0	0	0	(+ + +)	(+ +)	(+ +)	0	0	(+ +)	0	0	0	0
2.17 (H-8 α)	0	0	0	0	(+ + +)	(+ + +)	(+ + +)	(+ + +)	0	(- -)	0	0	0
1.13 (Me-12)	0	0	0	(+ + +)	(+ + +)	0	0	0	0	(+ +)	0	0	0
9.58 (H-13)	(+ +)	0	(+ + +)	0	0	(+ + +)	0	0	(+ +)	0	(+ +)	(+ +)	0
1.19 (Me-14)	0	(+ + +)	0	(+ + +)	0	0	(+ + +)	0	0	0	0	0	0
0.94 (Me-15)	0	(+ + +)	(+ + +)	(+ + +)	0	0	0	0	0	(+ +)	0	0	(+ +)

*Measured at 500 MHz, in CDCl_3 solution, by the FT difference method.

†(+) and (++) and (++) and (++) denote weak (0.1–1%), medium (1.1–3%) and strong (>3%) positive NOE enhancements, respectively. (–) denotes a medium negative NOE enhancement. Zero indicates NOE enhancement not observed.

‡Not measured.

eluting with petrol–EtOAc (49:1). This CC provided 25 mg of impure **2**, which was purified on prep. TLC (silica gel plates, petrol–EtOAc, 49:1, as eluent). Compound **2** (14 mg) crystallized on cooling, mp 65–67°; $[\alpha]_D^{20}$ = 15.4° (CHCl_3 ; *c* 0.078). IR $\nu_{\text{max}}^{\text{KBr}}$ cm^{-1} : 3020, 2960, 2930, 2880, 2770, 1680, 1460, 1435, 1380, 1310, 1195, 1130, 1060, 1025, 990, 925, 835, 750, 730. ^1H and ^{13}C NMR: Table 1. EIMS (70 eV, direct inlet) *m/z* (rel. int.): 218 [$\text{M}]^+$ (12), 217 (2), 203 (40), 189 (10), 185 (12), 176 (100), 161 (43), 147 (70), 146 (64), 119 (48), 118 (90), 105 (55), 91 (60), 77 (23), 55 (8). $\text{C}_{15}\text{H}_{22}\text{O}$: *M*, 218. Identical in all respects with the previously described compound [2].

The antimicrobial activity of **2** against *Staphylococcus aureus* was assayed by bioautography [4, 5], showing moderate inhibition zones ($\sim 30\%$ of inhibition).

Acknowledgements—This work was supported by the Spanish ‘Dirección General de Investigación Científica y Técnica’ (grant No. PB90-0078) and the Portuguese JNICT (grant No. PBIC/C/1100/92).

REFERENCES

1. Batista, O., Duarte, A., Nascimento, J., Simões, F., de la Torre, M. C. and Rodriguez, B. (1994) *J. Nat. Prod.* **57**, 858.
2. Rücker, G., Mayer, R., Breitmaier, E., Will, G., Kirfel, A. and El Kordy, M. (1984) *Phytochemistry* **23**, 1647.
3. Connolly, J. D. and Hill, R. A. (1991) *Dictionary of Terpenoids*, Vol. 1, p. XXII. Chapman & Hall, Cambridge.
4. Slusarenko, A. J., Longland, A. C. and Whitehead, I. M. (1989) *Bot. Helv.* **99/2**, 203.
5. Rahalison, L., Hamburger, M., Hostettmann, K., Monod, M. and Frenk, E. (1991) *Phytochem. Anal.* **2**, 199.