

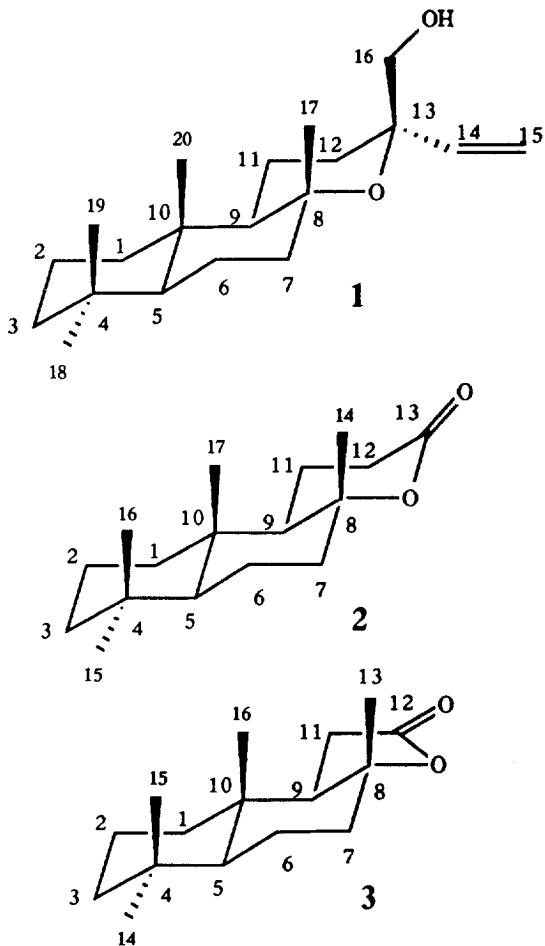
DITERPENOIDS FROM *KYLLINGA ERECTA*

RENÉ DOLMAZON, MICHEL ALBRAND, JEAN-MARIE BESSIÈRE,* YAYA MAHMOUT,† DOROTA WERNEROWSKA and KRZYSZTOF KOLODZIEJCZYK

Laboratoire de Chimie Organique, Institut National des Sciences Appliquées, 20 Avenue A. Einstein, 69621 Villeurbanne Cedex, France; *Laboratoire de Chimie Appliquée, Ecole Nationale Supérieure de Chimie, 8, rue de l'Ecole Normale, 34075 Montpellier Cedex, France; †Laboratoire des Substances Naturelles, Faculté des Sciences Exactes et Appliquées, BP 1027, N'Djaména, Chad

(Received 25 July 1994)

Key Word Index—*Kyllinga erecta*; Cyperaceae; diterpenoids; manoyloxide derivatives; 16-hydroxy-manoyloxide; ambreinolide; norambreinolide or sclareolide.


Abstract—16-Hydroxy-manoyloxide, a new derivative of manoyloxide, ambreinolide and norambreinolide have been isolated from the ethyl acetate extract of *Kyllinga erecta* rhizomes.

INTRODUCTION

In a continuation of our studies on the diterpenoids from *Kyllinga erecta* S. [1, 2], we have now investigated the ethyl acetate extract of the rhizomes. From this source a new diterpenoid, 16-hydroxy-manoyloxide (**1**) has been isolated and its structure established by chemical and spectroscopic means, including a chemical correlation with manoyloxide. In addition, ambreinolide (**2**), the natural sources of which were limited [3, 4], and norambreinolide (**3**), a product of economic interest, have been also isolated and identified by their spectral characteristics and optical rotation values.

RESULTS AND DISCUSSION

The new diterpenoid (**1**) exhibited IR bands for a hydroxyl group ($3350-3450\text{ cm}^{-1}$) and a vinyl moiety ($3050, 1640\text{ cm}^{-1}$). Its ^1H NMR spectrum (200 MHz) showed signals of four tertiary methyl groups at δ 1.28 (Me-17, deshielded by the oxygen atom of the tetrahydropyran ring), 0.86 and 0.80 (2 Me), of a vinyl group attached to a fully substituted sp^3 carbon atom (an ABX system, δ_A 5.12, δ_B 5.26, δ_X 5.81; J_{AB} = 1.5 Hz, J_{AX} = 10.7 Hz, J_{BX} = 17.4 Hz), and of two protons geminal to a primary hydroxyl group (an AB system, δ_A 3.34, δ_B 3.28; J_{AB} = 11.1 Hz). This ^1H NMR spectrum was different from that of its known ent-16-hydroxy-13-epi-manoyloxide epimer [5] which has antiflammatory properties [6]. With ent-16-hydroxy-13-epi-manoyloxide, the protons of Me-17 are abnormally shielded. This shielding is the result of the reduction of the electronic density of the oxygen of the tetrahydropyran ring, consequent upon a hydrogen bond between this oxygen atom and the hydrogen of the hydroxyl group. The ^{13}C NMR spectral data of C-1 to C-11 and C-17 to C-20 of **1** were identical to those of manoyloxide [1], whereas the carbon resonances of C-12 to C-16 led us to place the hydroxyl group

at C-16. The mass spectra of **1** closely matched the spectra of the ent-16-hydroxy-13-epi-manoyloxide epimer [5]. Finally, confirmation of the structure of the alcohol (**1**) was established by chemical correlation with manoylox-

ide through reduction of the methane sulphonate with LAH.

The structures of **2** and **3** were established by comparison of their spectroscopic properties with those reported in the literature [7–12].

EXPERIMENTAL

Plant material. Rhizomes of *K. erecta*, growing wild in Moundou (Southern Chad), were collected in July 1990 and authenticated. A voucher specimen is deposited at the herbarium of the Laboratoire Vétérinaire et Zootechnique de Farcha, N'Djamena, Chad.

General. Mps: uncorr.; IR: neat or CHCl_3 ; ^1H and ^{13}C NMR: CDCl_3 , δ ppm, TMS; EI-MS: Hewlett Packard: chromatograph type 5890 equipped with capillary DB1 column $25\text{ m} \times 0.23\text{ mm}$ (eluent He), mass quadrupole detector type 5970 A series mass selective detector (electron impact to 70 eV), 60° (2 mn) and then 10° mn^{-1} until 200° ; optical rotations: CHCl_3 ; TLC: aluminium plate precoated with a 0.2 mm layer of silica gel 60 F_{254} (Kieselgel), CH_2Cl_2 –EtOAc (9:1); HPLC: Waters Model 510, differential refractometer Waters 410, column Bondapak C18, $19 \times 150\text{ mm}$, MeOH – H_2O (4:1).

Extraction and isolation of the diterpenoids. Air-dried rhizomes (60 g) were powdered and extracted at reflux with EtOAc. The EtOAc extract was concd and the residue (9.6 g) taken up with MeOH and filtered. The mother liquors were evapd (8.4 g) and the residue was subjected to CC on silica gel, eluting with cyclohexane–EtOAc (4:1). Eight frs, F_1 – F_8 , were collected and concd. Frs F_4 (600 mg), F_5 (250 mg) and F_8 (260 mg) were submitted to prep. HPLC, eluting with MeOH – H_2O (4:1). Fr. F_4 gave 5 frs, F_{41} , F_{42} , F_{43} , F_{44} , and F_{45} , of decreasing polarity. These frs were concd then purified by CC on silica gel. F_{45} (32 mg) gave an unidentified compound. F_{44} (27 mg) and F_{43} (8 mg) gave, respectively, 11α -hydroxymanoylooxide and 1β -hydroxymanoylooxide already isolated from *Kyllinga* [1, 2]. F_{42} (25 mg) gave norambreinolide (**3**) isolated the first time from *Kyllinga*. F_{41} (26 mg) was a mixt. which was not explored. Fr. F_5 gave three frs, F_{51} , F_{52} , F_{53} . As above, these frs were concd. The main fr., F_{53} (36 mg), was purified by CC on silica gel. It gave the new compound, 16-hydroxymanoylooxide (**1**). Fr. F_8 gave three frs, F_{81} , F_{82} and F_{83} . As above, these were concd. The main fr. F_{82} (30 mg), was purified by CC on silica gel to giveambreinolide (**2**), a natural compound previously isolated in small quantities from tobacco [4].

16-Hydroxymanoylooxide (1). (18 mg) R_f 0.36; $[\alpha]_D + 13.3^\circ$ (c 0.90); IR ν_{max} cm^{-1} : 3450–3350, 3040, 1640; ^1H NMR (200 MHz): δ 5.81 (1H, *dd*, $J = 17.4, 10.7\text{ Hz}$, H-14), 5.26 (1H, *dd*, $J = 17.4, 1.5\text{ Hz}$, H-15), 5.12 (1H, *dd*, $J = 10.7, 1.5\text{ Hz}$, H-15'), 3.34 (1H, *d*, $J = 11.1\text{ Hz}$, H-16), 3.28 (1H, *d*, $J = 11.1\text{ Hz}$, H-16'), 1.28 (3H, *s*), 0.86 (3H, *s*), 0.80 (6H, *s*); ^{13}C NMR: δ 144.0 (C-14), 114.0 (C-15), 76.3 (C-8), 75.6 (C-13), 68.5 (C-16), 56.4 (C-5), 52.8 (C-9), 43.6 (C-7), 42.0 (C-3), 38.9 (C-1), 37.2 (C-10), 33.4 (C-18), 33.2

(C-4), 27.2 (C-12), 25.8 (C-17), 21.5 (C-19), 20.2 (C-6), 18.5 (C-2), 15.1 (C-20), 14.5 (C-11); MS m/z (rel. int.): 306 ([M] $^+$ absent), 276 (7), 275 (19), 258 (26), 257 (100), 161 (6), 149 (7), 147 (7), 137 (39), 123 (20), 109 (19), 107 (17), 105 (13), 95 (24), 93 (16), 92 (22), 81 (31), 69 (39), 55 (75), 41 (38). Treatment of **1** (18 mg) with mesyl chloride (0.1 ml) for 24 hr and later reduction with LiAlH_4 (20 mg) in dry Et_2O for 6 hr at ambient temp. then 12 hr with reflux, gave manoylooxide identified by its ^1H NMR characteristics and its optical rotation value [1].

Ambreinolide (2). (15 mg) [7–11] R_f 0.52; mp 142°; $[\alpha]_D + 28.3^\circ$ (c 0.75); IR ν_{max} cm^{-1} : 1725; ^1H NMR (200 MHz): δ 2.77–2.45 (2H, *m*, H-12), 2.18–1.98 (1H, *m*), 1.39 (3H, *d*, $J = 0.7\text{ Hz}$), 0.90 (3H, *s*), 0.85 (3H, *d*, $J = 0.7\text{ Hz}$), 0.82 (3H, *s*); ^{13}C NMR: δ 171.7 (C-13), 83.8 (C-8), 56.0 (C-5), 53.6 (C-9), 41.8 (C-3), 41.2 (C-12), 39.2 (C-1), 37.3 (C-10), 33.3 (C-4), 33.2 (C-15), 29.0 (C-7), 22.9 (C-14), 21.5 (C-16), 19.6 (C-6), 18.4 (C-2), 15.8 (C-11), 15.1 (C-17); MS m/z (rel. int.): [M] $^+$ 264 (1), 250 (4), 249 (22), 236 (1), 221 (3), 220 (4), 205 (4), 193 (18), 192 (100), 191 (55), 177 (74), 163 (4), 149 (18), 137 (33), 136 (30), 123 (41), 121 (26), 109 (45), 95 (49), 81 (54), 67 (78), 55 (70), 43 (94), 41 (77).

Norambreinolide. (10 mg) [7, 10–12] R_f 0.44; mp 117°; $[\alpha]_D 37.6^\circ$ (c 0.50); IR ν_{max} cm^{-1} : 1755; ^1H NMR: δ 2.41 (1H, *dd*, $J = 16.1, 14.8\text{ Hz}$, H-11), 2.23 (1H, *dd*, $J = 16.1, 6.5\text{ Hz}$, H-11'), 1.33 (3H, *s*), 0.91 (3H, *s*), 0.89 (3H, *s*), 0.84 (3H, *s*); ^{13}C NMR: δ 176.9 (C-12), 84.4 (C-8), 59.1 (C-9), 56.7 (C-5), 42.2 (C-3), 39.5 (C-7), 38.7 (C-1), 36.1 (C-10), 33.2 (C-14), 33.1 (C-4), 28.7 (C-11), 21.6 (C-13), 20.9 (C-15), 20.6 (C-6), 18.1 (C-2), 15.1 (C-16); MS m/z (rel. int.): 250 (1), 236 (4), 235 (28), 217 (1), 208 (4), 207 (24), 206 (23), 191 (19), 189 (9), 177 (9), 163 (8), 150 (21), 137 (28), 125 (56), 123 (77), 109 (49), 95 (55), 83 (17), 82 (49), 81 (51), 69 (49), 67 (58), 55 (57), 43 (100), 41 (70).

REFERENCES

1. Mahmout, Y., Bessière, J. M. and Dolmazon, R. (1993) *J. Agric. Food Chem.* **41**, 277.
2. Mahmout, Y., Bessière, J. M. and Dolmazon, R. (1993) *Phytochemistry* **34**, 865.
3. Vlad, P. F. (1982) *Usp. Khim.* **51**, 1129 (Russ.); *Chem. Abstr.* (1982) **97**, 182663b.
4. Schumacher, J. N. and Vestal, L. (1974) *Tob. Sci.* **18**, 43.
5. Alcaraz, M. J., Garcia-Ochoa, S., Jimenez, M. J., Valverde, S. and Vilar, A. (1989) *Phytochemistry* **28**, 1267.
6. Alcaraz, M. J., Jimenez, M. J., Valverde, S., Sanz, J., Rabanal, R. M. and Vilar, A. (1989) *J. Nat. Prod.* **52**, 1088.
7. Urones, J. G., Basabe, P., Marcos, I. S., Gonzalez, J. L., Jimenez, V., Sexmero, M. J. and Lithgow, A. M. (1992) *Tetrahedron* **48**, 9991.
8. Wehrli, F. W. and Nishida, T. (1979) in *Progress in the Chemistry of Organic Natural Products*, Vol. 36 (Herz, N., Grisebach, H. and Kirby, G. W., eds), p. 56. Springer, Wien.

9. Gasic, M. J., Djarmati, Z. and Pelletier, S. W. (1976) *J. Org. Chem.* **41**, 1219.
10. Enzell, C. R., Dahlman, O. and Bielawski, J. (1994) in *Applications of Mass Spectrometry to Organic Stereochemistry* (Splitter, J. S. and Turecek, F., eds), p. 522. VCH.
11. Hodges, R., Cambie, R. C. and Joblin, K. N. (1970) *Org. Mass. Spectrom.* **3**, 1473.
12. Pourchert, C. J. and Behnke, J. (1993) *The Aldrich Library of ¹³C and ¹H FT NMR Spectra* 1st Edn, Vol. I, p. 1142 C.