

STRUCTURES OF MACROCALYXIN B, F, G AND H, AND MAOYERABDOSIN FROM *ISODON MACROCALYX*

WANG XIAN-RONG, WANG HONG-PING, HU HUI-PING, SUN HAN-DONG,* WANG SU-QING,† SHINICHI UEDA,† YOSHIHIRO KURODA† and TETSURO FUJITA‡†‡

Anhui Institute of Medical Sciences, Hefei, Anhui, China; *Kunming Institute of Botany, Academia Sinica, 650204 Kunming, Yunnan, China; †Faculty of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-01, Japan

(Received in revised form 25 May 1994)

Key Word Index—*Isodon macrocalyx*; Labiatae; *ent*-kauranoid; macrocalyxin B; macrocalyxin F; macrocalyxin G; macrocalyxin H; maoyerabdosin.

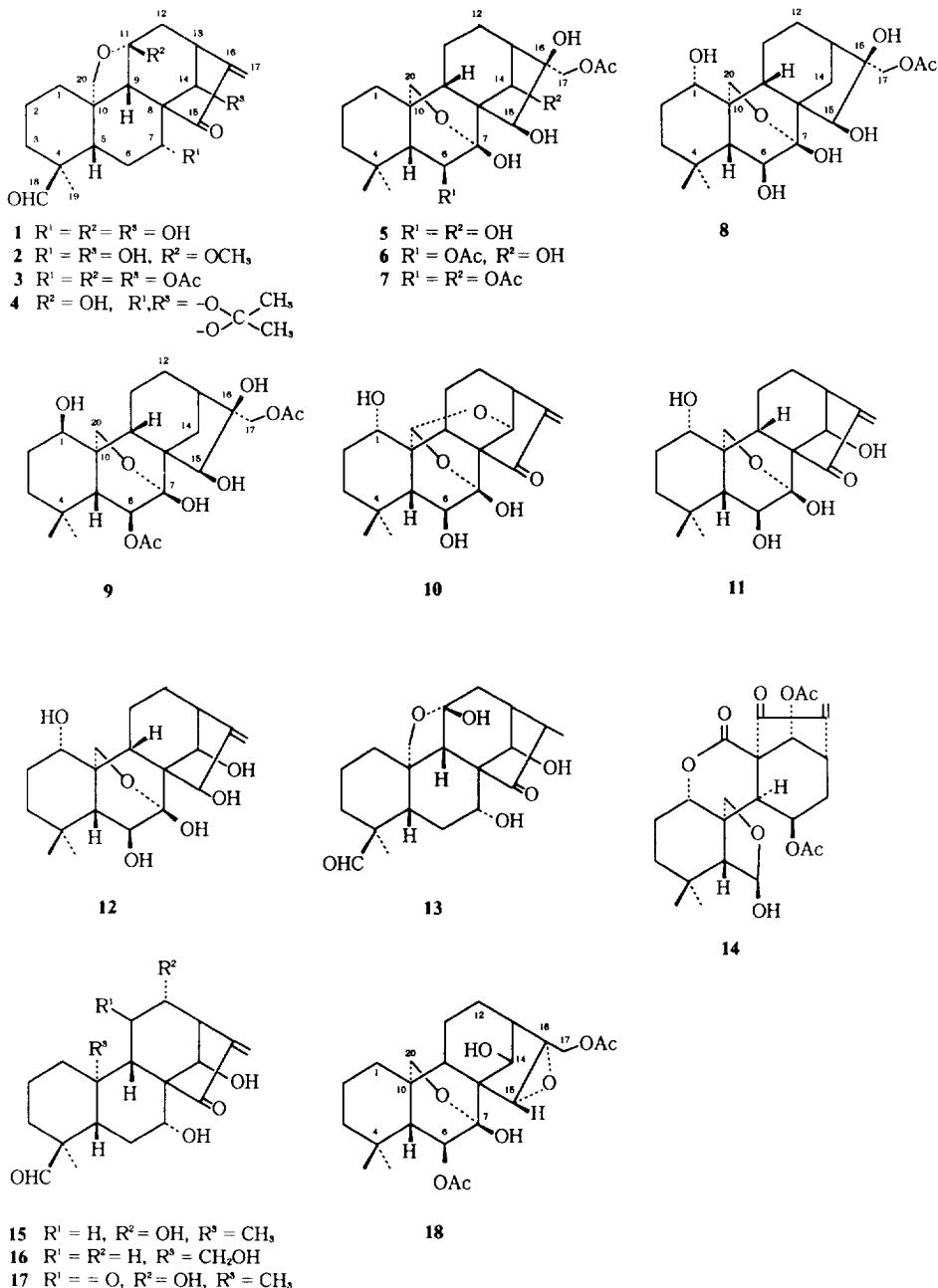
Abstract—Four new diterpenoids, macrocalyxins B, F, G, and H, together with maoyerabdosin and the known rabdophyllin H, poncidin, oridonin, and enmenol, were isolated from the leaves of *Isodon macrocalyx* and their structures were elucidated from spectral and chemical evidence.

INTRODUCTION

In previous communications [1-3], we have reported on the isolation and structure determination of macrocalyxins A (14), C (15), D (16) and E (17) from *Isodon macrocalyx* Kudo. Further investigation on the constituents of the same plant has led to the isolation of four new diterpene macrocalyxins, B (2), F (1), G (5) and H (8), in addition to maoyerabdosin [4]. This paper describes the isolation and structure elucidation of these four diterpenes together with the evidence for the revised structure (9) of maoyerabdosin, which was first isolated from *I. japonicus* (Burm.) Hara collected in Xin county, Henan, China.

RESULTS AND DISCUSSION

Dry leaves of *I. macrocalyx* collected in the JiuHua Shan district, Anhui, China were extracted with ethanol. Silica gel column chromatography of the extract gave macrocalyxins B and F along with the known diterpenes macrocalyxins A, C, D and E.


A similar work up of dry leaves of *I. macrocalyx* collected in the Huang Shan district, Anhui, China yielded macrocalyxin G, macrocalyxin H and maoyerabdosin (9), as well as the known diterpenes rabdophyllin H (6), poncidin (10), oridonin (11), and enmenol (12).

Macrocalyxin F (1), $C_{20}H_{26}O_6$, has a pentacyclic structure in which a ketone group is conjugated with an α -methylene group, as shown by the following spectral data: λ_{max} (EtOH) 223 nm (ϵ 8227); ν_{max} 1708 and 1640 cm^{-1} ; 1H NMR δ 6.24 and 5.41 (each 1H, *br s*); ^{13}C NMR δ 152.9 (*s*), 116.7 (*t*) (exo-methylene) and 208.2

(*s*) (ketone). The 1H NMR spectrum of 1 showed the presence of three hydroxyl groups [δ 8.24, 7.89 and 7.60 (each 1H, *s*)] of which the 1H NMR signals at δ 5.41 (*s*) and 4.95 (*dd*, J = 4.3, 8.4 Hz) coupled with the ^{13}C NMR signals at 74.0 and 73.9 (each *d*) showed that two were secondary. This fact suggested that, of the three hydroxy groups in 1, two are secondary and the third is tertiary. The 1H NMR signals at δ 9.36 (1H, *s*), 4.18 (1H, *d*, J = 8.8 Hz) and 4.12 (1H, *dd*, J = 1.1, 8.8 Hz), together with ^{13}C NMR signals at δ 205.3 (*d*) and 69.3 (*t*) showed the presence of an aldehyde group and a $-CH_2-O$ group. The ^{13}C NMR spectrum of 1 showed the presence also of a methyl group, six methylenes, five methines, and four tetrasubstituted carbon atoms together with two olefinic, one aldehyde and one carbonyl carbon atom. These spectral data, coupled with a knowledge of the structures of the diterpenoids isolated so far from the genus *Isodon*, led to the assumption that macrocalyxin F had an *ent*-kaurane structure as its basic skeleton [5]. Acetylation of 1 with acetic anhydride and pyridine gave triacetyl macrocalyxin F (3). In the 1H NMR spectrum of 3, the signal of H-14 underwent a downfield shift to δ 6.09 (*br s*), suggesting that it was assignable to H-14 α , which is affected anisotropically by the 15-carbonyl group and has an angle of *ca* 90° to the C-13-proton. Treatment of 1 with acetone and anhydrous copper (II) sulphate gave the acetonide (4). This confirmed the presence of an α -oriented hydroxyl group at C-7 in macrocalyxin F (1).

Macrocalyxin F (1) is a pentacyclic compound as shown by the degree of unsaturation. From comparisons of the ^{13}C NMR spectra of 1 with those of other kaurene derivatives, it was assumed that no oxygenated group was present on the A-ring. The ^{13}C NMR signals of 1 at δ 63.9 (*t*) and 103.7 (*s*) coupled the movement of the 1H NMR signals of H-9 β and H-12 α to lower field at δ 2.35 (1H, *s*)

‡Author to whom correspondence should be addressed.

and 3.21 (1H, *dd*, $J = 9.0, 14.1$ Hz) and the movement of the ^{13}C NMR signals of C-9 and C-12 to lower field at δ 62.1 (*d*) and 46.1 (*t*), respectively, suggested the presence of a hemiacetal ring attached to the C-11 position. In the NOESY spectrum of **1**, NOE cross peaks were observed for CH_2 -20 and $\text{Me-4}\alpha$, $\text{H-2}\alpha$, $\text{H-6}\alpha$ and $\text{H-14}\alpha$; $\text{H-9}\beta$ and $\text{H-1}\beta$, $\text{H-5}\beta$ and $\text{H-7}\beta$; $\text{CHO-4}\beta$ and $\text{Me-4}\alpha$, $\text{H-5}\beta$ and $\text{H-3}\beta$, respectively. These results indicated not only the positions of the two secondary hydroxy groups and the hemiacetal ring, but also the presence of a Me group at the C-4 α position and an aldehyde group at the C-4 β position. Accordingly, macrocalyxin F has the structure (**1**), *ent*-7 β , 11- α , 14-trihydroxy-18-aldehyde-11 β -20-epoxy-

kaur-16-en-15-one. It is the first example of 11 α -20-epoxy *ent*-kauranoid from *Isodon* plants.

Macrocalyxin B (**2**), $C_{21}\text{H}_{28}\text{O}_6$, has a five membered ring system with a ketone conjugated group to an α -methylene group, as shown by the following spectral data: ν_{max} 1640 cm^{-1} ; ^1H NMR δ 6.24 and 5.41 (each 1H, *br s*); ^{13}C NMR δ 152.3 (*s*), δ 117.4 (*t*) (exo-methylene) and δ 207.6 (*s*) (ketone). The ^{13}C NMR data of macrocalyxin B (**2**) showed the presence of a methyl group, six methylenes, five methines and four tetrasubstituted carbon atoms together with two olefinic, one aldehyde and one carbonyl carbon atom. The ^1H and ^{13}C NMR spectra of **2** were similar to those of macrocalyxin F (**1**). Macrocalyxin

B, however, has an extra signal for an $-OMe$ group attached to the 1β -position, as shown by the following spectral data. In the 1H NMR spectrum, the signal of $H-1\alpha$ of macrocalyxin B underwent an upfield shift by 0.71 ppm relative to the corresponding signal of **1** because of the space-steric effect of the $-OMe$ group. On the other hand, in the ^{13}C NMR spectrum, the signals assignable to C-12 and C-9 of **2** underwent an upfield shift of 5.6 ppm and 0.6 ppm, respectively, and C-11 of **2** a downfield shift of 2.6 ppm compared to **1** because of the substituent effect due to the $-OMe$ group [6]. Accordingly, macrocalyxin B has the structure **2**.

Macrocalyxin G (**5**), $C_{22}H_{34}O_8$. The IR spectrum of **5** did not show any absorption due to a double bond. The 1H NMR spectrum of **5** showed the presence of two tertiary methyl groups [δ 1.19 and 1.07 (each 3H, s)] and two methylene groups [δ 4.10 (1H, dd, J = 1.0, 9.5 Hz) and 3.39 (1H, d, J = 9.5 Hz)] and [δ 4.80, 4.58 (each 1H, d, J = 10.7 Hz)] located between an oxygen atom and a quaternary carbon. The ^{13}C NMR spectrum of **5** showed the presence of four methyl groups, five methylenes, six methines, four tetrasubstituted carbons, an acetal carbon [δ 99.3 (s)] and two oxygenated methyl carbons [δ 65.5 (t) and δ 73.7 (t)]. A high resolution EIMS peak of macrocalyxin G at m/z 151, which is formed by the cleavage of the B-ring, indicated the presence of 7-20-epoxy-*ent*-kaurene structure [5]. The cumulative data suggested that macrocalyxin G had an *ent*-7 α -hydroxy-7 β -20-epoxy-kaurane skeleton which is typical of *Isodon* diterpenes [5].

The 1H NMR spectrum of macrocalyxin G (**5**) showed the presence of five hydroxy groups [δ 8.55, 7.93, 7.82, 7.08 and 4.92 (each 1H, disappeared on adding D_2O)] of which the 1H NMR [δ 4.11 (1H, t, J = 5.0 Hz), δ 4.90 (1H, s) and δ 5.03 (1H, s)] and ^{13}C NMR [δ 73.2, 75.7, 72.0, (each d)] spectra showed that three are secondary. These data suggested that, of the five hydroxy groups in **5**, three are secondary, and two are tertiary. In the 1H - 1H COSY spectrum of **5**, the following coupled cross peaks were observed: (i) for the signals at δ 4.11 (1H, t, J = 5.0 Hz), 8.55 (1H, d, J = 4.5 Hz, OH) and 1.48 (1H, dd, J = 1.0, 5.2 Hz) due to the 5β -proton which is coupled by long-range interaction across the w-path with the signal of δ 3.93 (1H, dd, J = 1.0, 9.5 Hz, Hb-20), (ii) for the signals at δ 4.90 (1H, s), 7.92 (1H, br s, OH) and 2.36 (1H, dd, J = 1.0, 9.3 Hz) due to the 13α -proton which is coupled with the signal at δ 1.83 (1H, dd, J = 9.3, 13.7 Hz, H-12 α , and (iii) for the signals at δ 5.03 (1H, br s), 7.08 (1H, br s, OH) and the 13α -proton [δ 2.36 (1H, dd, J = 1.0, 9.3 Hz)] which is coupled by the long-range interaction across the w-path. These findings suggest that the signals at δ 4.11, 4.90 and 5.03 are assignable to $H-14\alpha$ and -6α and -15α , respectively, while the signals at δ 8.55, 7.92 and 7.08 are due to the hydroxyl groups attached to the 6β , 14β and 15β -positions, respectively. One of the two tertiary hydroxy groups was easily located to the 7β -position. The other was assigned to be at the 16α -position because the proton signal assigned to 12β was shifted downfield to δ 2.71 (1H, dd, J = 9.2, 12.3 Hz). The 1H NMR [δ 1.91 (3H, s)] and ^{13}C NMR [δ 171.2 (s), δ 20.9 (q)] showed the presence of

an acetyl group in **5**. The acetyl group was assigned to be at the 17 -position because the proton signals assigned to the 17 -position were shifted downfield to δ 4.58 and 4.80 (each 1H, d, J = 10.7 Hz). These data suggested that macrocalyxin G has structure **5**. The presumed structure (**5**) was supported by the chemical reaction and NOESY spectra described below. Treatment of **5** with acetic anhydride and pyridine gave the 14-acetyl rhabdophyllin H (**7**) [7]. In the NOESY spectra of macrocalyxin G (**5**), NOE cross peaks were observed for (i) $Me-4\alpha$ and $H-6\alpha$, $H-20$, (ii) $H-14\alpha$ and $H-11\alpha$, $Hb-20$, (iii) $H-9\beta$ and $H-5\beta$, and (iv) H_2-17 , $H-13\alpha$ and $H-15\alpha$, respectively.

Macrocalyxin H (**8**), $C_{22}H_{34}O_8$, was found to contain two tertiary methyl groups [δ H 1.22, 1.18 (each 3H, s), δ C 33.4 (q), 23.1 (q)], two CH_2O -groups [δ H 4.20, 4.07 (each 1H, d, J = 9.3 Hz), and 4.37, 4.32 (each 1H, d, J = 11.0 Hz), δ C 65.5 (t) and 71.7 (t)], an acetyl group [δ H 1.93 (3H, s), δ C 171.1 (s), 20.9 (q)] and five hydroxy groups [ν_{max} 3440, 3350, 3320, 3250 cm^{-1} , δ H 8.06, 7.81, 7.09, 5.69 and 4.83 (each 1H, disappeared on adding D_2O)]. The ^{13}C NMR spectrum of **8** showed the presence of three methyl groups, five methylenes, six methines, four tetrasubstituted carbons, an acetal carbon [δ 97.2 (s)], two oxygenated methyl carbons [δ 65.5 (t), and δ 71.7 (t)] and an acetyl carbon [δ 171.1 (s)]. The IR spectrum of **8** did not show any absorption due to a double bond. These spectral data suggest that macrocalyxin H has an *ent*-7 α -hydroxy-7 β -20-epoxy-kaurane skeleton which is typical of *Isodon* diterpenes [5].

The 1H NMR signals at δ 3.75 (1H, t, J = 3.0 Hz), 4.31 (1H, t, J = 5.0 Hz) and 4.57 (1H, br s) coupled with the ^{13}C NMR signals at δ 65.3 (d), 74.7 (d) and 73.0 (d) indicate the presence of three secondary and two tertiary hydroxy groups in **8**. In the 1H - 1H COSY spectra of **8**, the following coupled cross peaks were observed: (i) for the signals at δ 3.75, 5.69 (1H, br s, OH), and 1.83 (2H, m) due to the 2-protons, (ii) for the signals at δ 4.31 and 2.20 due to the 5β -proton which is coupled by long-range interaction along the w-path with the signal of δ 4.20 (1H, dd, J = 1.0, 9.3 Hz, 20Hb), (iii) for the signals at δ 4.57 (1H, br s) and 2.20 due to the 13α -proton by long-range interaction along the w-path. Thus the signals at δ 3.75, 4.31 and 4.57 were assigned to the $H-1\beta$, $H-6\alpha$ and $H-15\alpha$, respectively. Accordingly, the three hydroxy groups are located at the 1α -, 6β -, and 15β -positions, respectively. One of the two tertiary hydroxy groups was easily located to the 7β -position. The other was assigned to be at the 16α -position because the proton signal assigned to $C-12\beta$ was shifted downfield to δ 2.60 (1H, m).

One of the two CH_2O -groups [δ H 4.20, 4.07 (each 1H, dd, J = 1.0, 9.3 Hz)] was easily assigned to lie between C-10 and C-7 because the two protons were coupled by long-range interaction across the w-path with the protons of $C-5\beta$ and $C-9\beta$, respectively. Coupling cross peaks were observed for another oxygenated methyl group [δ 4.37, 4.32 (each 1H, d, J = 11.0 Hz)] and the acetyl group [δ 1.93 (3H, s)] in the 1H - 1H COSY spectra of **8**. NOESY cross peaks were observed for the two protons of the oxygenated methyl group, $H-13\alpha$ - and $H-15\alpha$ in the NOESY spectrum of **8**. Thus the $-CH_2-OAc$ group was

assigned to the 16α -position. Accordingly, it was concluded that macrocallyxin H had the structure **8**.

Maoyerabdosin (**9**), $C_{24}H_{36}O_9$. The IR spectrum did not show any absorption due to a double bond. The 1H NMR spectrum showed the presence of two tertiary methyl groups [δ 1.17, 0.92 (each 3H, *s*)] and two methylene groups [δ 4.19, 4.08 (each 1H, *dd*, *J* = 1.0, 9.4 Hz) and δ 4.49, 4.37 (each 1H, *d*, *J* = 11.3 Hz)] located between an oxygen atom and a quaternary carbon. The ^{13}C NMR spectrum of **9** showed the presence of two methyl groups, five methylenes, six methines, four tetra-substituted carbons, an acetalic carbon [δ 96.0 (*s*)], two oxygenated methyl carbons [δ 71.1 (*t*), 65.6 (*t*)] and two acetyl carbons [δ 171.0 (*s*), 169.7 (*s*)]. On the other hand, EIMS peaks at *m/z* 167 and 149 which were formed by cleavage of the B-ring indicated the presence of the 7-20-epoxy-*ent*-kaurane structure [8]. The above data suggest that maoyerabdosin has an *ent*-7 α -hydroxy-7 β -20-epoxy kaurane skeleton [8] which is typical of *Isodon* diterpenes.

The 1H NMR spectrum of maoyerabdosin (**9**) showed the presence of four hydroxyl groups [δ 8.40, 5.80, 5.30 and 4.92 (each 1H, disappeared on adding D_2O)] of which the 1H NMR [δ 3.75 (1H, *d*, *J* = 3.1 Hz)] and ^{13}C NMR [δ 65.0, 72.4 (each doublet)] spectra showed that two were secondary. These data suggest that, of the four hydroxyl groups in **9**, two are secondary and two are tertiary. In the 1H - 1H COSY spectrum of **9**, the following coupling cross peaks were observed: (i) for the signals at δ 3.75 (1H, *m*), 5.80 (1H, *d*, *J* = 3.9 Hz, OH) and 1.70 (2H, *m*, H₂-2), (ii) for the signals at δ 4.42 (1H, *d*, *J* = 3.1 Hz) and 4.92 (1H, *d*, *J* = 3.1 Hz, OH). NOE cross peaks were observed (i) for the signal at δ 3.75 and the signal at δ 4.19 (1H, *d*, *J* = 1.0, 9.4 Hz, Hb-20), (ii) for the signal at δ 4.42 and the signals at δ 4.49 and 4.37 (each 1H, *d*, *J* = 11.3 Hz) H₂-17 in the NOESY spectrum of **9**. These data and the downfield shift of the signal due to H-9 β , the signals at δ 3.75 and 4.42 were assigned to H-1 α and H-15 α , respectively. Thus the two hydroxyl groups are located to the 1 β - and 15 β -positions, respectively. One of the two tertiary hydroxyl groups was easily located to the 7 β -position. Another was assigned to be at the 16 β -position because the signal assigned to the 12 β proton was shifted downfield to δ 2.47 (1H, *m*) and the ^{13}C signal uniquely upfield to δ 19.8 (*t*). One of the two $-CH_2O-$ groups [δ 4.19, 4.08 (each 1H, *dd*, *J* = 1.0, 9.4 Hz)] was easily assigned to the H₂-20 because the two protons were coupled by long-range interaction across the w-path with H-5 β and H-9 β , respectively, in the 1H - 1H COSY spectrum of **9**. Another oxygenated methyl group [δ 4.49, 4.37 (each 1H, *d*, *J* = 11.3 Hz)] was assigned to be at the 16 α -position because NOESY cross peaks were observed between these two oxygenated methyl protons and both H-13 α and H-15 α in the NOESY spectrum of **9**.

Two acetyl groups at δ 2.17 and 1.93 (each 3H, *s*) were assigned to the C6 β - and C17- positions, because the proton signals of the C6 α - and C17- position were shifted downfield to δ 5.74 (1H, *d*, *J* = 5.2 Hz, H-6 α) as well as to δ 4.49 and 4.37 (each 1H, *d*, *J* = 11.3 Hz, H₂-17), respectively.

Accordingly, the structure of maoyerabdosin formerly **18** was revised to that depicted in **9**.

EXPERIMENTAL

General. Mps: uncorr.; IR: KBr disks; 1H NMR: 200, 300 or 600 MHz, tetramethylsilane as int. standard; mass spectra: JEOL JMS-01SG-2 spectrometer; CC: silica gel G 60 (0.063–0.200 mm, Merck); TLC precoated silica gel plates F₂₅₄ (0.25 and 0.5 mm in thickness). Extracts were dried over anhydrous Na_2SO_4 .

Isolation of diterpenoids from dried leaves of the plant. The EtOH extract obtained from dried leaves of *Isodon macrocalyx* (10 kg) collected at Jiuha Shan, Anhui, China in late August, 1984, was concd under red. pres. to 10 l, and EtOH was added to the extract to make a 90% EtOH soln which was then treated with charcoal. After evapn of the solvent, the residue was dissolved in EtOAc. The soln was shaken with aq. Na_2CO_3 to remove the acidic substances, then the organic layer, after drying, was evapd under red. pres. to give a residue (180 g), which was chromatographed on a silica gel column developed with $CHCl_3$ containing increasing amounts of Me_2CO . Elution with $CHCl_3$ gave macrocallyxin A and oleanolic acid, Elution with $CHCl_3$ - Me_2CO (9:1) gave macrocallyxin B and F. Elution with $CHCl_3$ - Me_2CO (4:1) gave macrocallyxin C, D and E.

The EtOH extract obtained from the dried leaves of *Isodon macrocalyx* (10 kg) collected at Huang-Shan, Anhui, China in late August, 1986, was treated as above to give a residue (340 g) which was chromatographed on a silica gel column developed by stepwise elution with $CHCl_3$ containing increasing amounts of Me_2CO . Elution with $CHCl_3$ gave rhabdophyllin H, macrocallyxin G and ponicidin. Elution with $CHCl_3$ - Me_2CO (9:1) gave maoyerabdosin and macrocallyxin H. Elution with $CHCl_3$ - Me_2CO (4:1) gave oridonin and enmenol. The yields, physical properties and spectral data of isolated compounds are as follows:

Macrocalyxin F (1). Needles (2g), mp 227–229° (from Me_2CO), $[\alpha]_D^{25}$ −127.9° (EtOH; *c* 0.5), UV λ_{max} (EtOH) 223 (*e* 8227) nm. IR ν_{max} 3428, 3373, 3250, 2786, 2686, 1724, 1708, 1640 cm^{-1} ; 1H NMR (C_5D_5N): δ 9.36 (1H, *s*, 4 β -CHO), 8.24, 7.89, 7.60 (each 1H, H-14, H-11, OH-7), 6.24 (s, Ha-17), 5.41 (2H, *s*, H-14 α , Hb-17), 4.95 (1H, *dd*, *J* = 4.3, 8.4 Hz, H-7 β), 4.18 (1H, *d*, *J* = 8.8 Hz, Ha-20), 4.12 (1H, *dd*, *J* = 1.1, 8.8 Hz, Hb-20), 3.39 (1H, *ttd*, *J* = 4.2, 4.2, 13.6 Hz, H-1 α), 3.27 (d, *J* = 9.1 Hz, H-13 α), 3.21 (dd, *J* = 9.0, 14.1 Hz, H-12 α), 2.35 (1H, *s*, H-9 β), 2.21 (1H, *dd*, *J* = 1.3, 12.8 Hz, H-5 β), 2.19 (1H, *dd*, *J* = 2.5, 14.1 Hz, H-12 β), 2.15 (ddd, *J* = 12.2, 12.4, 12.5 Hz, H-6 α), 1.72 (dd, *J* = 2.5, 12.0 Hz, H-6 β), 1.59 (1H, *tttt*, *J* = 2.2, 3.5, 2.2, 13.8 Hz, H-2 β), 1.50 (1H, *ttd*, *J* = 3.0, 14.1 Hz, H-2 α), 1.41 (1H, *dddt*, *J* = 4.4, 4.4, 4.3, 12.2 Hz, H-3 β), 1.18 (1H, *t*, *J* = 10.7, 13.5 Hz, H-1 β), 1.10 (1H, *d*, *J* = 12.9 Hz, H-3 α), 0.98 (3H, *s*, Me-4 α); ^{13}C NMR (C_5D_5N): δ 38.2 (t, C-1), 18.7 (t, C-2), 31.7 (t, C-3), 50.5 (s, C-4), 43.4 (d, C-5), 31.3 (t, C-6), 73.9 (d, C-7), 57.7 (s, C-8), 62.1 (d, C-9), 48.9 (s, C-10), 103.7 (s, C-11), 46.1 (t, C-12), 44.6 (d, C-13), 74.0 (d, C-14), 208.2 (s, C-15), 152.9 (s, C-16), 116.7 (t, C-17), 205.3 (d, C-18), 13.8 (q, C-19), 69.0 (t, C-20); HRMS *m/z* Found: 326.1729 [M]⁺. $C_{20}H_{26}O_6$ requires: C, 63.30; H, 7.44. $C_{20}H_{26}O_6$ requires: C, 63.15; H, 7.37%.

Macrocalyxin B (2). Needles (0.1g), mp > 300° (from

Me_2CO), $[\alpha]_{\text{D}}^{22} -62.8^\circ$ (MeOH; c 0.07). IR ν_{max} 3400, 1724, 1708, 1640 cm^{-1} ; ^1H NMR ($\text{C}_5\text{D}_5\text{N}$): δ 9.36 (1H, s, CHO-4 β), 8.30, 7.55 (each 1H, H-14, OH-7), 6.25 (1H, s, Ha-17), 5.46 (1H, s, Hb-17), 5.21 (1H, s, H-14 α), 4.90 (1H, dd, J = 4.0, 8.4 Hz, H-7 β), 4.05 (1H, dd, J = 1.7, 8.8 Hz, Ha-20), 3.95 (1H, d, J = 8.8 Hz, Hb-20), 3.25 (1H, d, J = 8.9 Hz, H-13 α), 3.14 (3H, s, -OMe), 2.90 (1H, dd, J = 9.0, 14.1 Hz, H-12 α), 2.68 (1H, ttd, J = 4.2, 4.2, 13.6 Hz, H-1 α), 2.16 (1H, s, H-9 β), 2.13 (1H, dd, J = 1.8, 12.8 Hz, H-5 β), 2.08 (1H, ddd, J = 12.2, 12.4, 12.5 Hz, H-6 α), 1.80 (1H, d, J = 14.1 Hz, H-12 β), 1.66 (1H, dd, J = 3.1, 12.4 Hz, H-6 β), 1.55 (1H, ttd, J = 3.6, 3.6, 14.0 Hz, H-2 β), 1.51 (1H, ttd, J = 3.0, 3.0, 14.0 Hz, H-2 α), 1.38 (1H, dddt, J = 4.7, 4.6, 4.7, 11.3 Hz, H-3 β), 1.08 (1H, d, J = 13.0 Hz, H-3 α), 1.04 (1H, t, J = 13.9 Hz, H-1 β), 0.95 (3H, s, Me-4 α); ^{13}C NMR ($\text{C}_5\text{D}_5\text{N}$): δ 38.1 (t, C-1), 18.5 (t, C-2), 31.5 (t, C-3), 50.5 (s, C-4), 43.5 (d, C-5), 31.2 (t, C-6), 73.7 (d, C-7), 57.4 (s, C-8), 61.5 (d, C-9), 48.6 (s, C-10), 106.3 (s, C-11), 40.5 (t, C-12), 44.5 (d, C-13), 73.5 (d, C-14), 207.6 (s, C-15), 152.3 (s, C-16), 117.4 (t, C-17), 205.1 (d, C-18), 13.6 (q, C-19), 69.5 (t, C-20), 47.3 (q, -OMe); HR-FAB-MS m/z found: 399.1758 [M] $^+$. $\text{C}_{21}\text{H}_{28}\text{O}_6\text{Na}$ requires 399.1788.

Macrocalyxin G (**5**). Needles (0.05g), mp 130–133°, $[\alpha]_{\text{D}}^{25} -38.66^\circ$ (MeOH; c 0.45). IR ν_{max} 3300, 1740, 1240 cm^{-1} ; ^1H NMR ($\text{C}_5\text{D}_5\text{N}$): δ 8.55 (1H, d, J = 4.5 Hz, OH), 7.92, 7.82, 7.08, 4.92 (each 1H, br s, OH), 5.03 (1H, br s, H-15 α), 4.90 (1H, br s, H-14 α), 4.80, 4.58 (each 1H, d, J = 10.7 Hz, H₂-17), 4.11 (1H, t, J = 5.0 Hz, H-6 α), 4.10 (1H, dd, J = 1.0, 9.5 Hz, Ha-20), 3.93 (1H, dd, J = 1.0, 9.5 Hz, Hb-20), 2.71 (1H, dd, J = 9.2, 12.3 Hz, H-12 β), 2.52 (1H, dd, J = 6.0, 9.0 Hz, H-9 β), 2.36 (1H, dd, J = 1.0, 9.3 Hz, H-13 α), 1.91 (3H, s, OAc), 1.83 (1H, dd, J = 9.3, 13.7 Hz, H-12 α), 1.48 (1H, dd, J = 1.0, 5.2 Hz, H-5 β), 1.41 (2H, m, 3-H, H-11 α), 1.31 (2H, m, H₂-2), 1.20 (3H, m, H-1, H-3, H-11 β), 1.19 (3H, s, Me-4 β), 1.07 (3H, s, Me-4 α), 0.86 (1H, m, H-1); ^{13}C NMR ($\text{C}_5\text{D}_5\text{N}$): δ 30.6 (t, C-1), 19.1 (t, C-2), 41.5 (t, C-3), 33.7 (s, C-4), 58.1 (d, C-5), 73.2 (d, C-6), 99.3 (s, C-7), 54.2 (s, C-8), 43.6 (d, C-9), 36.0 (s, C-10), 14.7 (t, C-11), 20.4 (t, C-12), 46.1 (d, C-13), 75.7 (d, C-14), 72.0 (d, C-15), 76.6 (s, C-16), 73.7 (t, C-17), 33.5 (q, C-18), 22.4 (q, C-19), 65.5 (t, C-20), 171.2, 20.9 (–OAc); HRMS m/z found: 426.2244 [M] $^+$. $\text{C}_{22}\text{H}_{34}\text{O}_8$ requires 426.2253.

Macrocalyxin H (**8**). Needles (0.07g), mp 230°, $[\alpha]_{\text{D}}^{25} -41.8^\circ$ (MeOH; c 0.22). IR ν_{max} 3440, 3350, 3320, 3250, 1725, 1705, 1240, 1058 cm^{-1} ; ^1H NMR ($\text{C}_5\text{D}_5\text{N}$): δ 8.06, 7.81, 7.09, 5.69, 4.83 (each 1H, OH), 4.57 (1H, br s, H-15 α), 4.37, 4.32 (each 1H, AB, d, J = 11.0 Hz, H₂-17), 4.31 (1H, t, J = 5.0 Hz, H-6 α), 4.20, 4.07 (each 1H, dd, J = 1.0, 9.3 Hz, H₂-20), 3.75 (1H, t, J = 3.0 Hz, H-1 α), 3.11 (1H, ddd, J = 1.0, 5.7, 10.9 Hz, H-9 β), 2.60 (1H, m, H-12 β), 2.20 (3H, m, H-3 β , H-13 α , H-5 β), 2.10 (1H, m, H-11 β), 1.99 (2H, m, H₂-14), 1.93 (3H, s, OAc), 1.83 (2H, m, H₂-2), 1.72 (1H, m, H-12 α), 1.69 (1H, m, H-11 α), 1.26 (1H, m, H-3 α), 1.18, 1.22 (each 3H, s, Me₂-4); ^{13}C NMR ($\text{C}_5\text{D}_5\text{N}$): δ 65.3 (d, C-1), 27.7 (t, C-2), 34.5 (t, C-3), 34.0 (s, C-4), 53.7 (d, C-5), 74.7 (d, C-6), 97.2 (s, C-7), 52.9 (s, C-8), 36.8 (d, C-9), 40.8 (s, C-10), 14.8 (t, C-11), 20.0 (t, C-12), 37.8 (d, C-13), 25.8 (t, C-14), 73.0 (d, C-15), 76.8 (s, C-16), 71.7 (t, C-17), 33.4 (q, C-18), 23.1 (q, C-19), 65.5 (t, C-20), 171.1, 20.9 (OAc); MS m/z 426 [M] $^+$. (Found C, 61.96; H, 8.23. $\text{C}_{22}\text{H}_{34}\text{O}_8$ requires: C, 61.97; H, 7.98%).

Maoyerabdosin (**9**). Needles (0.1g), mp 243–245°, (from MeOH), $[\alpha]_{\text{D}}^{22} -30^\circ$ (MeOH; c 0.1). IR ν_{max} 3550, 3490, 3440, 3280, 1715, 1360, 1220 cm^{-1} ; ^1H NMR ($\text{C}_5\text{D}_5\text{N}$): δ 8.40, 5.30 (each 1H, br s, OH), 5.80 (1H, d, J = 3.9 Hz, OH-1 β), 5.74 (1H, d, J = 5.2 Hz, H-6 α), 4.92 (1H, d, J = 3.1 Hz, OH-15 β), 4.49, 4.37 (each 1H, AB, d, J = 11.3 Hz, H₂-17), 4.42 (1H, d, J = 3.1 Hz, H-15 α), 4.19, 4.08 (each 1H, AB, dd, J = 1.0, 9.4 Hz, H₂-20), 3.75 (1H, m, H-1 α), 3.22 (1H, ddd, J = 1.0, 5.5, 11.7 Hz, H-9 β), 2.47 (1H, m, H-12 β), 2.28 (2H, m, H-5 β , H-13 α), 2.17 (3H, s, OAc), 2.15 (1H, m, H-3 β), 2.08 (1H, dd, J = 3.8, 12.8 Hz, H-14 β), 2.06 (1H, dd, J = 6.5, 12.8 Hz, H-11 β), 2.00 (1H, d, J = 12.9 Hz, 14 α -H), 1.93 (1H, s, OAc), 1.70 (3H, m, H₂-2, H-12 α), 1.60 (1H, m, H-11 α), 1.20 (1H, m, H-3 α), 1.17, 0.92 (each 3H, s, Me₂-4); ^{13}C NMR ($\text{C}_5\text{D}_5\text{N}$): δ 65.0 (d, C-1), 27.4 (t, C-2), 34.1 (t, C-3), 33.9 (s, C-4), 50.9 (d, C-5), 75.4 (d, C-6), 96.0 (s, C-7), 52.8 (s, C-8), 36.8 (d, C-9), 40.8 (s, C-10), 14.8 (t, C-11), 19.8 (t, C-12), 36.5 (d, C-13), 25.9 (t, C-14), 72.4 (d, C-15), 77.6 (s, C-16), 71.1 (t, C-17), 32.2 (q, C-18), 22.8 (q, C-19), 65.6 (t, C-20), 171.0, 169.7, 21.4, 20.3 (2 \times OAc); HRMS m/z found: 468.2357 [M] $^+$. $\text{C}_{24}\text{H}_{36}\text{O}_9$ requires: 468.2359. (Found: C, 61.41; H, 7.78. Calc. for $\text{C}_{24}\text{H}_{36}\text{O}_9$; C, 61.54; H, 7.69%).

Rabdophyllin H (**6**). Needles (2 g), mp 220–222°, (from MeOH). IR ν_{max} 3449, 3350, 1750, 1740, 1720, 1380, 1240 cm^{-1} ; ^1H NMR ($\text{C}_5\text{D}_5\text{N}$): δ 8.31, 7.90 (each 1H, s OH), 5.76 (1H, d, J = 6.5 Hz, H-6 α), 5.27 (1H, s, H-15 α), 4.97 (1H, s, H-14 α), 4.88, 4.67 (each 1H, d, J = 11.0 Hz, H₂-17), 4.16, 3.96 (each 1H, d, J = 9.2 Hz, H₂-20), 2.40 (1H, br d, J = 9.0 Hz, H-13 α), 2.18, 1.95 (each 3H, s, 2 \times OAc), 1.68 (1H, d, J = 6.5 Hz, H-5 β), 1.14, 0.92 (each 3H, s, Me₂-4); ^{13}C NMR ($\text{C}_5\text{D}_5\text{N}$): δ 31.1 (t, C-1), 18.9 (t, C-2), 41.2 (t, C-3), 33.7 (s, C-4), 54.8 (d, C-5), 75.4 (d, C-6), 98.1 (s, C-7), 53.9 (s, C-8), 44.9 (d, C-9), 36.0 (s, C-10), 14.6 (t, C-11), 21.4 (t, C-12), 44.0 (d, C-13), 71.5 (d, C-14), 73.5 (d, C-15), 77.5 (s, C-16), 73.5 (t, C-17), 32.5 (q, C-18), 21.5 (q, C-19), 66.1 (t, C-20), 171.1, 169.6, 20.8, 20.8 (2 \times OAc); HRMS m/z found: 468.2352 [M] $^+$. $\text{C}_{24}\text{H}_{36}\text{O}_9$ requires: 468.2359.

Ponicidin (**10**). Needles (1 g), mp 240–242°. IR ν_{max} 3350, 1728, 1640, 1060 cm^{-1} ; ^1H NMR ($\text{C}_5\text{D}_5\text{N}$): δ 6.19 (1H, s, Ha-17), 5.91 (1H, s, H-20), 5.31 (1H, s, Hb-17), 5.04 (1H, d, J = 6.3 Hz, H-14 β), 4.22 (1H, d, J = 1.1 Hz, H-6 α), 3.83 (1H, t, J = 8.4 Hz, H-1 β), 3.21 (1H, m, H-13 α), 2.95 (1H, d, J = 7.0 Hz, H-9 β), 2.93 (1H, m, H-12 α), 2.34 (1H, dd, J = 7.0, 14.0 Hz, H-11 α), 1.64 (1H, d, J = 1.2 Hz, H-5 β), 1.05, 0.94 (each 3H, s, Me₂-4); HRMS m/z found: 362.1740 [M] $^+$. $\text{C}_{20}\text{H}_{26}\text{O}_6$ requires: 362.1729.

Oridonin (**11**). Needles (10 g), mp 247–249° (from MeOH). IR ν_{max} 3420, 3200, 1700, 1640, 1060 cm^{-1} ; ^1H NMR ($\text{C}_5\text{D}_5\text{N}$): δ 9.07, 7.40 (each 1H, br s, OH), 6.90 (1H, d, J = 10 Hz, OH-6 β), 6.27, 5.51 (each 1H, s, H₂-17), 5.87 (1H, br s, OH), 5.51 (1H, s, H-14 α), 4.77, 4.38 (each 1H, AB, d, J = 10 Hz, H₂-20), 4.24 (1H, dd, J = 7.0, 10.0 Hz, H-6 α), 3.61 (1H, t, J = 7.0 Hz, H-1 β), 3.20 (1H, d, J = 9.0 Hz, H-13 α), 1.29, 1.14 (each 3H, s, Me₂-4); HRMS m/z found: 364.18766 [M] $^+$. $\text{C}_{20}\text{H}_{28}\text{O}_6$ requires: 364.1886.

Enmenol (**12**). Needles (2 g), mp 255–257°, (from MeOH). IR ν_{max} 3300, 3250, 1660, 1060 cm^{-1} ; ^1H NMR ($\text{C}_5\text{D}_5\text{N}$): δ 8.50 (1H, br s, OH), 7.85 (2H, br s, 2 \times OH), 6.50 (1H, br s, OH), 5.75, 5.68 (each 1H, s, H₂-17), 5.36 (1H, s, H-15 α), 5.16 (1H, s, H-14 α), 4.86, 4.46 (each 1H, d, J =

= 10.0 Hz, H₂-20), 4.28 (1H, *d*, *J* = 5.0 Hz, H-6 α), 3.74 (1H, *t*, *J* = 8.0 Hz, H-1 β), 2.91–2.87 (2H, *m*), 1.23, 1.19 (each 3H, *s*, Me₂-4); ¹³C NMR (C₅D₅N): δ 73.0 (*d*, C-1), 30.7 (*t*, C-2), 39.3 (*t*, C-3), 33.9 (*s*, C-4), 57.7 (*d*, C-5), 73.8 (*d*, C-6), 99.8 (*s*, C-7), 53.6 (*s*, C-8), 46.4 (*d*, C-9), 41.3 (*s*, C-10), 18.5 (*t*, C-11), 33.1 (*t*, C-12), 45.3 (*d*, C-13), 73.5 (*d*, C-14), 76.1 (*d*, C-15), 161.3 (*s*, C-16), 109.0 (*t*, C-17), 33.3 (*q*, C-18), 21.1 (*q*, C-19), 65.5 (*t*, C-20); HRMS *m/z* found: 366.204 [M]⁺, C₂₀H₃₀O₆ requires: 366.2042.

7,11,14-Triacetyl macrocalyxin F (3). Macrocalyxin F (1) (30 mg) dissolved in a mixt. of Ac₂O and pyridine (1:1, 2 ml) was kept for 48 hr at room temp. Usual work-up and prep. TLC (CH₂Cl₂–Me₂CO, 9:1) of the crude product gave the triacetate 3 (15 mg), as needles mp 95–97°. IR ν_{max} 1740, 1727, 1705, 1645, 1249 cm⁻¹; ¹H NMR (C₅D₅N): δ 9.38 (1H, *s*, CHO-4 β), 6.26, 5.51 (each 1H, *s*, H₂-17), 6.09 (1H, *s*, H-14 α), 5.67 (1H, *dd*, *J* = 6, 13 Hz, H-7 β), 4.25, 4.22 (each 1H, *d*, *J* = 10 Hz, H₂-20), 2.94 (1H, *s*, H-9 β), 2.09, 1.94, 1.83 (each 3H, *s*, 3 \times OAc), 0.89 (3H, *s*, Me-4 α); ¹³C NMR (C₅D₅N): δ 36.3 (*t*, C-1), 18.3 (*t*, C-2), 31.2 (*t*, C-3), 50.0 (*s*, C-4), 42.7 (*d*, C-5), 26.2 (*t*, C-6), 72.4 (*d*, C-7), 57.3 (*s*, C-8), 59.4 (*d*, C-9), 47.6 (*s*, C-10), 109.4 (*s*, C-11), 42.7 (*d*, C-12), 41.8 (*d*, C-13), 73.6 (*d*, C-14), 202.8 (*s*, C-15), 148.7 (*s*, C-16), 117.8 (*t*, C-17), 204.1 (*s*, C-18), 13.3 (*q*, C-19), 69.9 (*t*, C-20), 170.5, 169.8, 169.5, 21.9, 21.2, 20.9 (3 \times OAc); MS *m/z*: 488 [M]⁺, HRMS *m/z* found: 428.1833 [M – HOAc]⁺, C₂₄H₂₈O₇ requires: 428.1834.

Macrocalyxin F 7,14-monoacetonide (4). Macrocalyxin F (1) (20 mg) was dissolved in Me₂CO (20 ml) and anhydrous Cu₂SO₄ (2 g) was added to the soln. The reaction was refluxed gently for 3 days. The anhydrous CuSO₄ was filtered off and the solvent was removed under red. pres. to give the monoacetonide (20 mg). ¹H NMR (C₅D₅N): δ 9.32 (1H, *s*, CHO-4 β), 4.10, 3.80 (each 1H, *d*, *J* = 10 Hz, H₂-20), 4.00 (1H, *dd*, *J* = 4, 12 Hz, H-7 β), 1.50, 1.30 (each 3H, C^{Me}_0 , 0.96 (3H, *s*, Me-4 α).

Dihydromacrocalyxin F (13). Macrocalyxin F (1) (50 mg) was dissolved in MeOH (10 ml) and 10% Pd-C (15 mg) was added to the soln. The mixt. was hydrogenated for 1 hr. The catalyst was filtered off and the solvent was removed under red. pres. to give the dihydro compound (50 mg) as needles from MeOH, mp 254–256°. ¹H NMR (C₅D₅N): δ 9.15 (1H, *s*, CHO-4 β), 5.60 (1H, *d*, *J* = 1 Hz, H-14 α), 4.80 (1H, *m*, H-7 β), 4.00, 4.10 (each 1H, *d*, *J* = 10 Hz, H₂-20), 2.55 (1H, *d*, *J* = 3 Hz, H-13 α), 3.38 (1H, *m*, H-16), 1.16 (3H, *d*, *J* = 9 Hz, Me-16), 0.90 (3H, *s*, Me-4 α); MS *m/z*: 364 [M]⁺; $\Delta \varepsilon_{307}$ – 0.77 (MeOH).

7,14-Diacetyl macrocalyxin G (5). Macrocalyxin G (5) (15 mg) dissolved in a mixt. of Ac₂O and pyridine (1:1, 2 ml) was kept for 48 hr at room temp. Usual work-up and prep. TLC (CH₂Cl₂–Me₂CO, 9:1) of the crude product gave the diacetate 5 (8 mg), as needles mp 168–170°. IR ν_{max} 3500, 3440, 1745, 1735, 1240 cm⁻¹; ¹H NMR (CDCl₃): δ 5.34 (1H, *s*, H-14 α), 5.30 (1H, *d*, *J* = 6.3 Hz, H-6 α), 4.28 (2H, OH), 4.20 (1H, *s*, H-15 α), 4.10, 3.83 (each 1H, *d*, *J* = 10 Hz, H₂-20), 4.05 (2H, *s*, H₂-17),

2.15, 2.10, 2.08 (each 3H, *s*, 3 \times OAc), 1.13, 0.85 (each 3H, *s*, Me₂-4); ¹H NMR (C₅D₅N): δ 5.98 (1H, *s*, H-14 α), 5.59 (1H, *d*, *J* = 6.8 Hz, H-7 α), 4.78 (1H, *d*, *J* = 3.9 Hz, H-15 α), 4.65, 4.63 (each 1H, *d*, *J* = 10.0 Hz, H₂-17), 4.10, 3.97 (each 1H, *d*, *J* = 10.0 Hz, H₂-20), 2.15, 2.05, 1.95 (each 3H, *s*, 3 \times OAc), 1.26, 1.03 (each 3H, *s*, Me₂-4); HRMS *m/z* found: 510.2474 [M]⁺. C₂₆H₃₈O₁₀ requires: 510.2465.

Maoyerabdosin (9). Needles, mp 243–245°, (from MeOH), $[\alpha]_D^{25}$ – 30° (MeOH; *c* 0.1). IR ν_{max} 3550, 3490, 3440, 3280, 1715, 1360, 1220 cm⁻¹; ¹H NMR (C₅D₅N): δ 8.40, 5.30 (each 1H, *br s*, OH), 5.80 (1H, *d*, *J* = 3.9 Hz, OH-1 β), 5.74 (1H, *d*, *J* = 5.2 Hz, H-6 α), 4.92 (1H, *d*, *J* = 3.1 Hz, OH-15 β), 4.49, 4.37 (each 1H, AB, *d*, *J* = 11.3 Hz, H₂-17), 4.42 (1H, *d*, *J* = 3.1 Hz, H-15 α), 4.19, 4.08 (each 1H, AB, *dd*, *J* = 1.0, 9.4 Hz, H₂-20), 3.75 (1H, *m*, H-1 α), 3.22 (1H, *ddd*, *J* = 1.0, 5.5, 11.7 Hz, H-9 β), 2.47 (1H, *m*, H-12 β), 2.28 (2H, *m*, H-5 β , H-13 α), 2.17 (3H, *s*, OAc), 2.15 (1H, *m*, H-3 β), 2.08 (1H, *dd*, *J* = 3.8, 12.8 Hz, H-14 β), 2.06 (1H, *dd*, *J* = 6.5, 12.8 Hz, H-11 β), 2.00 (1H, *d*, *J* = 12.9 Hz, H-14 α), 1.93 (3H, *s*, OAc), 1.70 (3H, *m*, H₂-2, H-12 α), 1.60 (1H, *m*, H-11 α), 1.20 (1H, *m*, H-3 α), 1.17, 0.92 (each 3H, *s*, Me₂-4); ¹³C NMR (C₅D₅N): δ 65.0 (*d*, C-1), 27.4 (*t*, C-2), 34.1 (*t*, C-3), 33.9 (*s*, C-4), 50.9 (*d*, C-5), 75.4 (*d*, C-6), 96.0 (*s*, C-7), 52.8 (*s*, C-8), 36.8 (*d*, C-9), 40.8 (*s*, C-10), 14.8 (*t*, C-11), 19.8 (*t*, C-12), 36.5 (*d*, C-13), 25.9 (*t*, C-14), 72.4 (*d*, C-15), 77.6 (*s*, C-16), 71.1 (*t*, C-17), 32.2 (*q*, C-18), 22.8 (*q*, C-19), 65.6 (*t*, C-20), 171.0, 169.7, 21.4, 20.3 (2 \times OAc); HRMS *m/z* found: 468.2357 [M]⁺. Found C, 61.41; H, 7.78. C₂₄H₃₆O₉ requires: 468.2359. Found: C, 61.41; H, 7.78. C₂₄H₃₆O₉ requires: C, 61.54; H, 7.69%.

Acknowledgements—We are grateful to Dr Shigeyuki Mizobuchi of Kirin Brewery Co. Ltd, for his constant encouragement. We are also indebted to Dr N. Akimoto of this Faculty and Dr M. Itagaki of JEOL for measurements of mass spectra.

REFERENCES

1. Wang, Xian-Rong, Wang, Zhao-Quan, Dong, Jin-Guang and Xue, Zhao-Wen (1984) *Acta Botanica Sinica* **26**, 425.
2. Wang, Xian-Rong, Wang, Zhao-Quan, Dong, Jin-Guang and Xue, Zhao-Wen (1985) *Acta Botanica Sinica* **27**, 285.
3. Wang, Xian-Rong, Wang, Zhao-Quan, Dong, Jin-Guang and Xue, Zhao-Wen (1986) *Acta Botanica Sinica* **28**, 415.
4. Zhao, Qing-Zhi, Cha, Jin-Hua, Wang, Han-Qing and Sun, Han-Dong (1984) *Chinese Traditional and Herbal Drugs* **15**, 1.
5. Fujita, E., Nagao, Y. and Node, M. (1976) *Heterocycles* **5**, 793.
6. Sun, Han-Dong (1988) *New Diterpenoids from Rabdosia Plants of China*, p. 48.
7. Cheng, P. Y., Xu, M. J., Lin, Y. L., Shi, J. C. and Xu, G. Y. (1986) *Acta Pharmaceutica Sinica* **21**, 109.