

TRITERPENOID AND PRENYLATED PHENOL GLYCOSIDES FROM *BLUMEA LACERA*

RASHMI AGARWAL, RAHUL SINGH, I. R. SIDDIQUI and J. SINGH

Natural Products Laboratory, Department of Chemistry, University of Allahabad, Allahabad 211 002, India

(Received in revised form 1 September 1994)

Key Word Index—*Blumea lacera*; Compositae; terpene glycoside; phenol glycoside.

Abstract—Two new glycosides, the triterpenoid glycoside 19 α -hydroxyurs-12-ene-24,28-dioate 3-*O*- β -D-xylopyranoside and the phenol glycoside 2-isoprenyl-5-isopropylphenol 4-*O*- β -D-xylopyranoside have been isolated from the whole plant of *Blumea lacera* and their structures elucidated by means of spectral and chemical studies.

INTRODUCTION

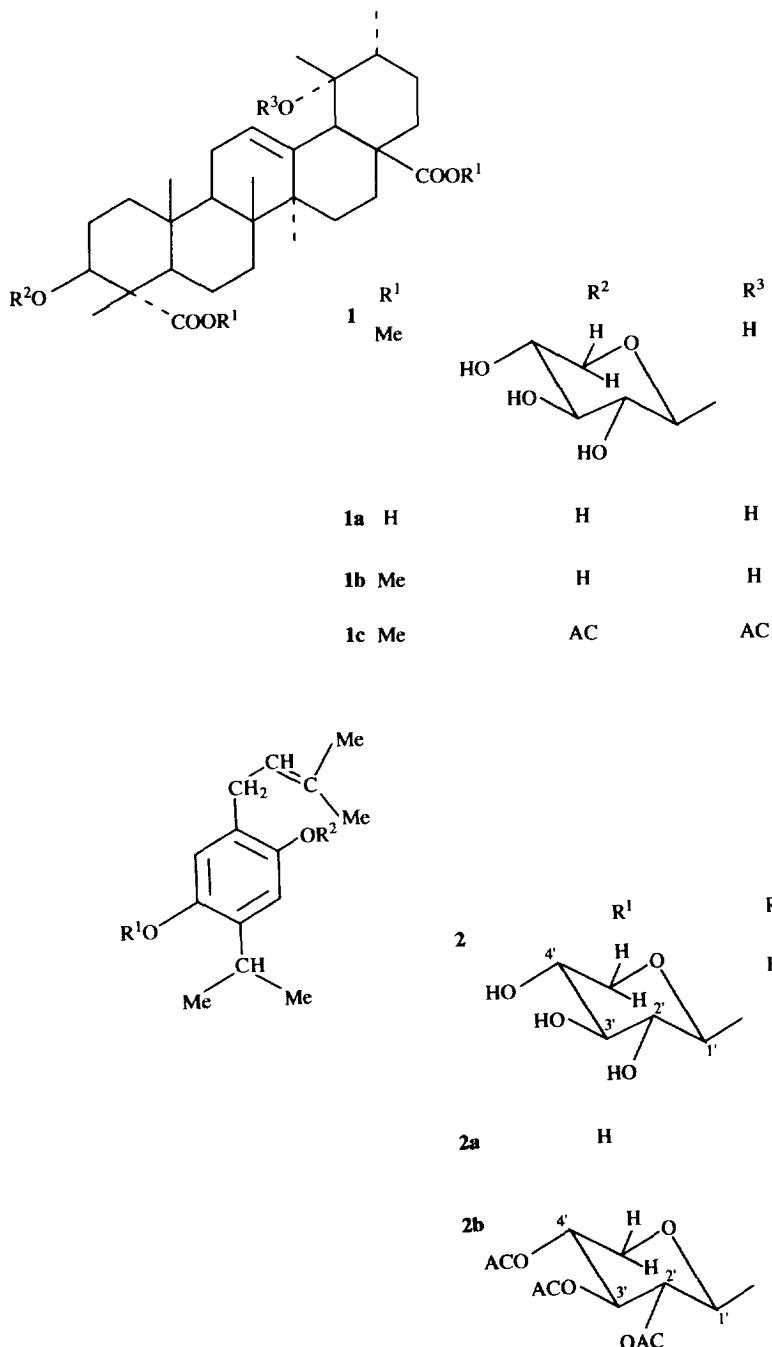
Blumea lacera (Burm.f.) DC. [1] is a commonly occurring herb, distributed throughout the plains of India, Ceylon, China, Malaya, Australia and tropical Africa. It is known to cure bronchitis, blood diseases and fevers, and to alleviate burning sensations [2]. Since very little chemical work has been reported on this plant, we undertook the investigation of its constituents. So far, the presence of only small amounts of acetylinic compounds, a thiophene derivative, a diester [3], campesterol [4] and three flavonoids [5] have been reported from this plant. This paper describes the isolation and structural elucidation of two new glycosides.

RESULTS AND DISCUSSION

Glycosides **1** and **2**, were isolated from the petrol extract of the whole plant of *B. lacera*.

Compound **1** on acid hydrolysis gave the aglycone **1a** and a sugar, whereas on enzyme hydrolysis it gave the aglycone **1b** and a sugar. The sugar in both cases was identified as D-xylose on the basis of co-paper chromatography with an authentic sample.

The aglycone **1b** responded positively to Liebermann-Burchard [6], TCA [7] and TNM [8] tests. Its IR spectrum showed absorptions owing to hydroxyl (3460 cm^{-1}) and carbomethoxyl (1725, 1710 cm^{-1}) groups and a trisubstituted double bond (1630 cm^{-1}). This suggested that the aglycone was a pentacyclic unsaturated triterpenoid. In **1a**, as expected, no peaks were present at 1725 and 1710 cm^{-1} .


The ^{13}C NMR values for **1a** and **1b** were found to be identical except for those of C-24 and C-28. This was owing to the presence of two $-\text{CO}_2\text{Me}$ groups in **1** which were hydrolysed to carboxyl groups in the formation of **1a** but not **1b**. On acetylation, **1a** and **1b** both formed diacetates and thus established the presence of two hydroxyl groups.

The ^1H NMR signals between δ 0.71 and 1.28 (each s, 3H) and at δ 0.95 (d, 3H, J = 7.0 Hz) were from five tertiary and one secondary methyl group, respectively. The signal at δ 5.34 (t, 1H), owing to a vinylic proton, showed that the compound was an urs-12-ene derivative.

The mass spectrum of **1b** revealed a pair of diagnostically important mass peaks at m/z 278 and 260 [278 – H_2O] typical of retro-Diels-Alder fragmentation of ring C of an urs-12-ene derivative. It also gave a positive Zimmermann test [9] indicating a C-3 position for the hydroxyl function; this location was also biogenetically favoured. A double doublet at δ 3.80 in the ^1H NMR spectrum [J = 2.7 Hz (diequatorial coupling) [10] and J = 5.7 Hz (equatorial axial coupling [11] corresponding to H- β (eq) of C-3)] showed the axial orientation of hydroxyl group at C-3, since equatorial (β) orientation of the hydroxyl group would increase the value of the coupling constant owing to diaxial coupling [12].

The ^{13}C NMR spectrum of the compound resembled that of methyl ursolate [13], showing that the compound was a methyl ursolate derivative. The ^1H NMR spectrum showed a characteristic broad singlet at δ 2.60 (1H, H-18 β), in accordance with the presence of a 19 α hydroxyl group. This was further confirmed by comparing the ^{13}C NMR spectrum of the compound with the methyl ester of myriaboric acid [14].

The ^1H NMR spectra exhibited two peaks at δ 3.60 and 3.76 corresponding to two carbomethoxyl groups. The high δ value of C-4 in the compound as compared to that of α -amyrin was a result of deshielding by the $-\text{CO}_2\text{Me}$ group at C-4. The mass ion peak at m/z 219 [278 – CO_2Me], owing to ready loss of $-\text{CO}_2\text{Me}$ groups, showed that the second $-\text{CO}_2\text{Me}$ group was at C-17. The ^{13}C NMR signals for C-24 at δ 177.1 and for C-28 at δ 178.2 were from the carbonyl functions and confirmed the $-\text{CO}_2\text{Me}$ groups were at C-4 and C-17. The IR spectrum of the compound showed three intense bands at 1160, 1185 and 1235 cm^{-1} characteristic of di- and

triterpenes carrying-CO₂Me groups in axial orientation. Thus, the aglycone (**1b**) was identified as 3 β ,19 α -dihydroxyurs-12-ene-24,28-methyl dioate.

The ¹H NMR spectrum of the glycone showed a signal at δ 5.15 (*d*, 1H, *J* = 7.5 Hz) for the anomeric proton of xylose and established its β -linkage with the aglycone. The downfield signal for C-3 at δ 82.2 which appeared at δ 73.3 in the aglycone revealed C-3 as the site of glycosidation. This was further confirmed by the ¹³C NMR spectrum (Table 1). Consequently, **1** was 19 α -hydroxyurs-12-ene-24,28-dioate 3-*O*- β -D-xylopyranoside.

Compound **2** was assigned the molecular formula C₁₉H₂₈O₆. On acid hydrolysis it gave an aglycone (**2a**) and D-xylose. The aglycone gave a blue-green colour with alcoholic FeCl₃ solution, indicating its phenolic nature. IR absorption bands at 3300 cm⁻¹ owing to hydroxyl groups and at 1500–1600 cm⁻¹ owing to an aromatic ring, further confirmed the phenolic hydroxyl nature of the aglycone. On acetylation, it formed a diacetate (**2b**), thus confirming the presence of two hydroxyl groups.

Furthermore, on the basis of standard colour reactions and spectral studies, it was found to have a *p*-hydroquin-

Table 1. ^{13}C NMR spectral data for **1**, **1a** and **1b**

C	1	1a	1b
1	41.2	41.3	41.3
2	28.0	27.5	27.5
3	82.2	73.1	73.2
4	48.6	48.0	48.0
5	53.1	53.0	53.0
6	21.0	21.0	21.0
7	33.4	33.1	33.2
8	41.3	41.3	41.3
9	47.1	47.0	47.1
10	41.6	41.5	41.5
11	25.2	25.0	25.0
12	129.2	129.2	129.2
13	138.6	138.6	138.6
14	41.3	41.2	141.2
15	28.6	28.6	28.6
16	25.5	25.5	25.5
17	48.6	48.3	48.3
18	53.8	53.6	53.6
19	77.4	77.5	77.5
20	41.0	41.1	41.1
21	25.6	25.1	25.7
22	37.8	37.4	37.4
23	25.8	25.5	25.5
24	177.0	180.0	177.1
25	15.6	15.8	15.8
26	17.2	17.3	17.3
27	26.4	26.1	26.1
28	178.4	180.4	178.2
29	27.4	27.4	27.4
30	16.0	16.0	16.1
	106.0		
	106.0		
	74.6		
	79.4		
	71.1		
	68.5		
CO ₂ Me	{ 52.1 51.6 }	{ 52.0 51.4 }	CO ₂ Me

one nucleus [15] containing isoprenyl and isopropyl groups at positions C-2 and C-5, respectively.

The site of xylosidation was found to be C-4 on the basis of its ^{13}C NMR spectrum. The ^{13}C NMR data of acetate **2b** of the glycoside suggested that the acetoxy group must be located *ortho* to the isopropyl group because the isopropyl, methyl and methine carbons showed considerable downfield shifts (from δ 23.2 to 24.1 and from δ 27.8 to 29.9, respectively), upon acetylation of the phenolic hydroxyl group, whereas the isoprenyl $-\text{CH}_2$ ^1H NMR signal at δ 3.30 showed no change. Therefore, the structure of the acetate **2b** was deduced to be 2-isoprenyl-4-xylosyloxy-5-isopropylphenol acetate. The ^1H NMR spectrum of **2** also showed an anomeric proton signal of D-xylose as a doublet at δ 5.10 (1H, *d*, J = 7 Hz) indicating its β -linkage with the aglycone. Thus, **2** was identified as 2-isoprenyl-5-isopropylphenol 4-*O*- β -D-xylopyranoside.

EXPERIMENTAL

Plant material (at full leaf state) was collected in January from Allahabad, India. A herbarium specimen of the plant is on file at the Botanical Survey of India, sheet no. = 45466. Mps: uncorr.; TLC: silica gel G (Merck 7731) with solvent systems (a) C₆H₆-DCM (4:1) and (b) EtOAc-MeOH (4:1); CC: silica gel 60 (Merck 7734); IR: KBr disks; ^1H NMR: 90 MHz, CDCl₃ soln, using TMS as int. standard; ^{13}C NMR: 25.05 MHz, pyridine-*d*₅ soln, with TMS employing the FT mode.

Air-dried plant material was extracted in petrol. The concd extract was loaded onto a flash column and then eluted with different solvents of increasing polarity. Elution with C₆H₆ yielded a fr. containing a crystalline compound (**1**) and elution with EtOAc yielded a shiny compound (**2**).

Compound 1. Homogeneous on TLC, R_f 0.39 (solvent a). Mp 147° (Found: C, 67.07; H, 8.02. Calc for C₃₇H₅₇O₁₀: C, 67.17; H, 8.62%). IR $\nu_{\text{max}}^{\text{KBr}}$ cm⁻¹: 3560, 3460, 1000, 930, 1725, 1630, 1160, 1050, 930, 1185, 1235; ^1H NMR [CDCl₃, 100 MHz]: δ 2.60 (*brs*, 1H, -OH), 3.60 (s, 3H, $-\text{CO}_2\text{Me}$), 3.76 (s, 3H, $-\text{CO}_2\text{Me}$), 5.34 (*t*, 1H, H-12), 0.95 (*d*, 3H, J = 7 Hz, sec-Me), 5.15 (*d*, 1H, J = 7.5 Hz, H-1'), 3.2-3.8 (*m*, 5H, sugar protons), 0.71-1.28 (18H, 6 *x* Me), 3.8 (1H, *dd*, J = 2.7, 5.7 Hz); ^{13}C NMR: Table 1.

Acid hydrolysis (7% H₂SO₄) of compound **1** gave aglycone **1a** and the sugar xylose (co-chromatography with an authentic sample). The aglycone crystallized from DCM, mp 275° (R_f 0.60 solvent b). IR $\nu_{\text{max}}^{\text{KBr}}$ cm⁻¹: 3560, 3460, 1690 (CO₂H), 1630, 1000; ^{13}C NMR: Table 1.

Enzyme hydrolysis of glycoside **1** yielded the sugar xylose and aglycone **1b**. A mixture of the glycoside (0.1 g) in 50% aq. EtOH (20 ml) and emulsion soln (10 ml; prep'd from almonds), was kept at 45° for 2 hr and then at room temp. for 4 days. The soln was extracted with EtOAc and the remaining hydrolysate was concd in a rotary evaporator. The syrup so obtained on paper chromatography gave one spot (R_f 0.21, solvent system BAW, spray AHP). Co-PC with an authentic sample gave only one spot. Mp 260° (R_f 0.52 solvent b). IR $\nu_{\text{max}}^{\text{KBr}}$ cm⁻¹: 3560, 3460, 1725, 1710, 1630, 1000; ^{13}C NMR: Table 1. Acetylation of **1b** gave the diacetate **1c** as needles, mp 205°.

Compound 2. Mp 203° (from CH₂Cl₂). Homogeneous on TLC, R_f 0.51 (EtOAc-MeOH, 4:1) (Found: C, 69; H, 8.1. Calc. for C₁₉H₂₈O₆: C, 69.5; H, 8.53%). ^1H NMR (CDCl₃, 90 MHz): δ 1.15 (6H, *d*, J = 7 Hz, $-\text{CHMe}_2$), 1.60 (3H, *s*, Me), 1.60 (3H, *s*, Me), 3.30 (2H, *d*, J = 6 Hz, $-\text{CH}_2-$), 5.06 (1H, *t*, J = 6 Hz, $-\text{CH}=$), 6.54 (1H, *s*), 6.96 (1H, *s*), 3.1-3.8 (*m*, sugar protons), 5.10 (1H, *d*, J = 7 Hz, C-1 of Xyl); ^{13}C NMR: δ 149.5 (*s*), 147.5 (*s*), 123.2 (*s*), 118.8 (*s*), 134.6 (*d*, C-3), 113.7 (*d*, C-6), 27.8 (*d*, C-7), 23.2 (*q*, C-8), 23.2 (*q*, C-9), 28.8 (*t*, C-10), 27.0 (*d*, C-11), 29.0 (*s*, C-12), 24.4 (*q*, C-13), 24.4 (*q*, C-14), 106.0 (anomeric carbon), 74.5, 79.5, 71.2, 68.5.

Tetracetate of compound 2. Compound **2** (0.05 g) was acetylated with Ac₂O (5 ml) and pyridine (1 ml) at room temp. for 48 hr. Crystallization from EtOAc gave a solid (Found: C, 60.8; H, 6.2. Calc. for C₂₇H₃₆O₁₄: C, 61.3; H,

6.81%). ^1H NMR (CDCl_3 , 90 MHz): δ 1.13 (3H, *d*, *J* = 7 Hz, $-\text{CHMe}_2$), 1.14 (3H, *d*, *J* = 7 Hz, $-\text{CHMe}_2$), 2.08 (9H, *s*, $3 \times \text{OAc}$), 2.10 (3H, *s*, OAc), 6.80 (1H, *s*), 6.90 (1H, *s*), 5.10 (1H, *d*, *J* = 7 Hz, C-1 of Xyl), 5.00–5.38 (*m*, sugar protons), 5.10 (1H, *d*, *J* = 7 Hz, $-\text{CH}=<$), 1.64 (3H, *s*, Me), 3.30 (2H, *d*, *J* = 6 Hz, $-\text{CH}_2-$), 6.0 (1H, *t*, *J* = 6 Hz, $-\text{CH}=$); ^{13}C NMR: δ 149.4 (*s*), 147.0 (*s*), 123.1 (*s*), 119.1 (*s*), 134.1 (*d*, C-3), 118.0 (*d*, C-6), 29.9 (*d*, C-7), 24.1 (*q*, C-8), 24.1 (*q*, C-9), 170.2, 170.4, 169.8, 169.0 (each *s*, CO).

Hydrolysis of glycoside. An EtOH soln of **2** was refluxed with 7% H_2SO_4 for 4 hr. The mixt. was then poured into ice-cold water. A yellowish white ppt. sepd and was crystallized from EtOAc to provide the aglycone **2a** (R_f 0.69 CHCl_3) (Found: C, 76.0; H, 8.1. Calc. for $\text{C}_{14}\text{H}_{19}\text{O}_2$: C, 76.7; H, 8.6%); ^{13}C NMR: δ 149.5 (*s*), 148.0 (*s*), 132.5 (*s*), 123.0 (*s*), 118.8 (*d*), 113.7 (*d*), 27.8 (*d*), 23.2 (*q*), 23.2 (*q*), 28.8 (*d*), 27.0 (*d*), 29.0 (*d*), 24.2 (*q*). The sugar in the aq. layer was identified as D-xylose.

REFERENCES

1. Hooker, J. D. (1872) *Flora of India* Vol. III, p. 263.
2. Kirtikaran, K. R. and Basu, B. D. (1993) *Indian Medicinal Plants*. K. M. Basu, India.
3. Bohlmann, F. and Zdero, C. (1969) *Tetrahedron Letters* 69.
4. Pal, R., Moitra, S. K., Chakravati, N. N. and Adhya, R. N. (1972) *Phytochemistry* **11**, 1855.
5. Rao, C., Bheemasankara, Rao, T. N. and Murali Krishna, B. (1977) *Planta Med.* **31**, 235.
6. Liebermann, C. (1885) *Ber. Deash. Chem. Cos.* 1804.
7. Brieskorne, C. H. and Mohran, G. H. (1960) *Naturwissenschaften* **47**, 107.
8. Ruzicka, L. and Liebigs (1929) *Ann. Chem.* **25**, 471.
9. Barton, D. H. R. and Mayo, P. D. (1954) *J. Chem. Soc.* 887.
10. Wang, M., Niwa, M. and How-Wei Wo (1988) *Phytochemistry* **27**, 299.
11. Kouno, I., Baba, N., Ohni, Y. and Kawamo, M. (1988) *Phytochemistry* **27**, 297.
12. Rogers, C. B. and Subramony, G. (1988) *Phytochemistry* **27**, 531.
13. Seo, S., Tomita, Y. and Tori, K. (1975) *Tetrahedron Letters* 7.
14. Ngounou, F. N., Lontsi, D. and Sandengam, B. L. (1988) *Phytochemistry* **27**, 2287.
15. Gupta, D. and Singh, J. (1990) *Phytochemistry* **29**, 1946.