

CYCLOARTANE-TYPE GLYCOSIDES FROM THALICTRI HERBA

HITOSHI YOSHIMITSU, KAZUHIRO HAYASHI,* MIKI KUMABE* and TOSHIHIRO NOHARA*†

Faculty of Engineering, Kyushu Kyoritsu University, 1-8 Jiyugaoka Yahata-nishi-ku, Kitakyushu 807, Japan; *Faculty of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Kumamoto 862, Japan

(Received 18 July 1994)

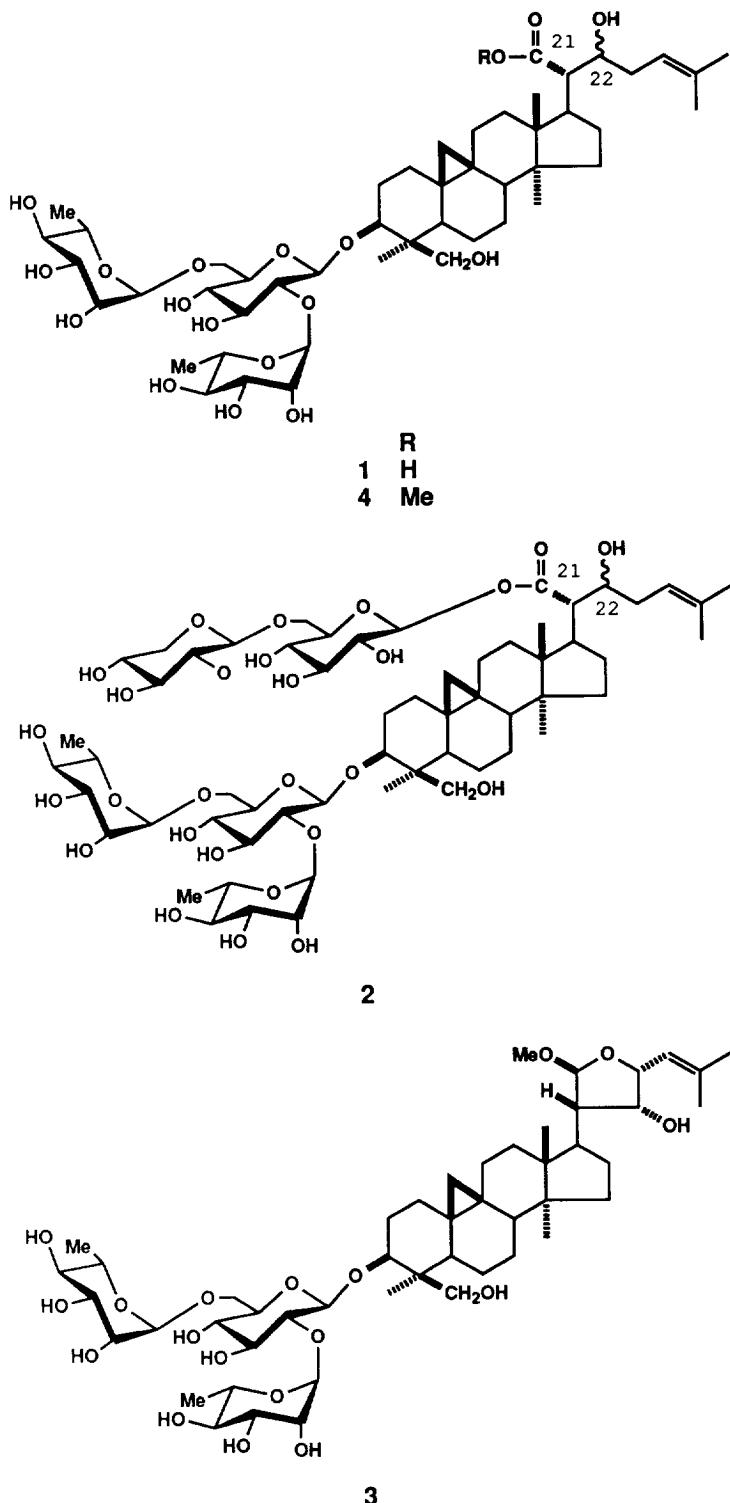
Key Word Index—*Thalictrum* sp.; Thalictri Herba; Ranunculaceae; cycloartane glycosides; thalictoside.

Abstract—Two new cycloartane-type glycosides, designated as thalictosides V and IX, were isolated from the methanolic extract of Thalictri Herba (Takatogusa), the dried aerial parts of *Thalictrum* sp. plants. Their chemical structures have been characterized as 3-*O*-monodesmoside and the 3,21-di-*O*-bisdesmoside of 3β,22ξ,30-trihydroxycycloart-24-en-21-oic acid, by chemical and spectroscopic evidence.

INTRODUCTION

In the preceding paper [1] on the chemical constituents of Thalictri Herba (Takatogusa), the dried aerial parts of *Thalictrum* sp. plants, we described the isolation and structural determination of two cycloartane-type and three oleanane-type triterpene glycosides. In a continuing study on the glycosidic constituents of this plant material, we obtained, in addition, two new cycloartane-type glycosides, named thalictosides V (1) and IX (2). This paper deals with their structural characterization.

RESULTS AND DISCUSSION


The methanol extract of Thalictri Herba was partitioned into a benzene–water solvent system. Diaion HP-20 column chromatography of the water-soluble portion provided the glycosidic constituents, which were further purified using a combination of Sephadex LH-20, silica gel and ODS column chromatography to furnish the two thalictosides, V and IX (1 and 2).

Thalictoside V (1), obtained as a powder, showed a $[M - H]^-$ peak at m/z 941 in the negative FAB-mass spectrum, and proton signals owing to a cyclopropane methylene at δ 0.21 and 0.80, three tertiary methyl groups at δ 0.94, 1.27 and 1.52, two olefinic methyl groups at δ 1.63 and 1.69 on a double bond, two secondary methyl groups at δ 1.63 ($J = 6.2$ Hz) and 1.70 ($J = 6.2$ Hz), three anomeric protons at δ 4.96 (1H, *d*, $J = 7.7$ Hz), 5.47 (1H, *br s*) and 6.68 (1H, *br s*), and one olefinic proton at δ 5.61 (1H, *br t*) in the ^1H NMR spectrum. These spectral data indicated that 1 was a cycloartane triglycoside derivative. Besides, the chemical shifts of the aglycone moiety, except for the signals owing to the side-chain moiety and the C-17 on the D-ring, and of the sugar residue in the ^{13}C NMR

spectrum of 1 showed coincidence with those of thalictoside III (3). Moreover, the ^1H – ^1H COSY of 1 exhibited cross-peaks between the olefinic proton at δ 5.61 and the methylene proton at δ 2.65, and between the signal at δ 2.65 and the hydroxy methine proton at δ 4.03. Therefore, it became clear that the hydroxy methine proton at δ 4.03 and the two olefinic methyl groups were located at C-22 and C-25, respectively. No signal owing to a C-21 methyl group was observed in the ^1H NMR spectrum. Thus, the C-21 signal was deduced to be a carboxyl. Thereupon, 1 was treated with diazomethane to afford the methyl ester (4), which showed a clustered $[M]^+$ at m/z 979.5242 $[\text{C}_{49}\text{H}_{80}\text{O}_{18}\text{Na}]^+$ in the HR-FAB-mass spectrum. The ^1H and ^{13}C NMR spectra of 4 showed signals owing to one new methoxy group ($\delta_{\text{H}} 3.79$ and $\delta_{\text{C}} 52.4$) and one ester carbonyl carbon ($\delta_{\text{C}} 174.9$). From the above evidence, the structure of 1 was concluded to be $3\beta,22\xi,30$ -trihydroxycycloart-24-en-21-oic acid 3-*O*- α -L-rhamnopyranosyl-(1→2)-[α -L-rhamnopyranosyl-(1→6)]- β -D-glucopyranoside.

Thalictoside IX (2), obtained as a powder, showed a clustered $[M]^+$ at m/z 1259.6036 $[\text{C}_{59}\text{H}_{96}\text{O}_{27}\text{Na}]^+$ in the HR-FAB-mass spectrum. The ^1H NMR spectrum displayed signals owing to one cyclopropane methylene group [δ 0.20, 0.75 (each *br s*, H₂-19)], three tertiary methyl groups [δ 0.89 (s, H₃-28), 1.17 (s, H₃-18) and 1.52 (s, H₃-29)], two olefinic methyl groups [δ 1.66 (s, H₃-26) and 1.71 (s, H₃-27)], two secondary methyl groups [δ 1.65 (*d*, $J = 5.9$ Hz, Rha H₃-6) and 1.70 (*d*, $J = 6.2$ Hz, Rha H₃-6)], and one olefinic proton [δ 5.58 (*br t*, H-24)]. Based on the above evidence, the structure of 2 was considered to be analogous to that of 1. Furthermore, the ^1H NMR spectrum of 2 suggested the presence of five anomeric proton signals at δ 4.92 (1H, *d*, $J = 7.3$ Hz), 4.97 (1H, *d*, $J = 7.0$ Hz), 5.49 (1H, *br s*), 6.25 (1H, *d*, $J = 7.7$ Hz) and 6.71 (1H, *br s*). The ^{13}C NMR spectrum revealed the presence of one ester carbonyl carbon signal at δ 173.5

*Author to whom correspondence should be addressed.

and five anomeric carbon signals at δ 96.1, 100.9, 102.6, 105.4 and 105.7. The anomeric carbon signal at δ 96.1 could be assigned to the sugar attached to the carboxyl group as an ester linkage. On selective cleavage of the ester-glycoside linkage with anhydrous LiI and 2,6-lutidine in anhydrous methanol [2], **2** provided an anomeric mixture of methyl oligoglycoside and a prosapogenin. In

the ^{13}C NMR spectral data for the methyl ester (**5**) of the prosapogenin, all carbon signals were in good agreement with those of **4**. The anomeric mixture of methyl glycosides obtained by selective cleavage of the ester-glycoside linkage of **2** on acid hydrolysis gave glucose and xylose. Meanwhile, the negative FAB-mass spectrum of **2** gave a peak at m/z 1235 owing to $[\text{M} - \text{H}]^-$, which was higher

by 249 mu (hexose + pentose) than that of **1**. Furthermore, in the ^{13}C NMR spectrum of **2**, signals owing to the sugar moiety linked to the C-21 carboxyl group of the aglycone could be assigned to β -D-xylopyranosyl-(1 \rightarrow 6)- β -D-glucopyranoside. From the above evidence, the structure of **2** was determined to be 3-O- α -L-rhamnopyranosyl-(1 \rightarrow 2)-[α -L-rhamnopyranosyl-(1 \rightarrow 6)]- β -D-glucopyranosyl 3,22 ξ ,30-trihydroxycycloart-24-en-21-oic acid 21-O- β -D-xylopyranosyl-(1 \rightarrow 6)- β -D-glucopyranosyl ester.

EXPERIMENTAL

General. ^1H and ^{13}C NMR chemical shifts are given on a δ (ppm) scale with TMS as int. standard. FAB-MS were measured in a 3-nitrobenzyl alcohol matrix. TLC was performed on pre-coated Kieselgel 60 F₂₄₅ (Merck) and detection was achieved by spraying with 10% H_2SO_4 followed by heating. CC was carried out on Kieselgel (230–400 mesh, Merck), Sephadex LH-20 (Pharmacia), ODS (PrePAK-500/C₁₈, Waters) and Diaion HP-20 (Mitsubishi).

Isolation of triterpenes. *Thalictri Herba* (4.9 kg, purchased from Uchida Wakanyaku) was extracted with

MeOH and the extract partitioned between benzene and H_2O (1:1). The H_2O -soluble portion (605.1 g) was subjected to Diaion HP-20 CC with MeOH- H_2O (0 \rightarrow 30 \rightarrow 50 \rightarrow 70 \rightarrow 90 \rightarrow 100%) to afford seven frs (1–7). Fr. 7 (22.1 g) was then chromatographed on Sephadex LH-20 with MeOH to provide four frs (8–11). Fr. 9 (14 g) was further sepd by silica gel CC with CHCl_3 -MeOH- H_2O (45:10:1 \rightarrow 40:10:1 \rightarrow 14:6:1) to give six frs (12–18). Fr. 17 was subsequently purified by ODS CC with MeOH- H_2O (50 \rightarrow 60%), followed by silica gel CC with CHCl_3 -MeOH- H_2O (40:10:1), to furnish thalictoside V (**1**) (13 mg). Fr. 18 was also purified by ODS CC with MeOH- H_2O (50 \rightarrow 60%), followed by silica gel CC with CHCl_3 -MeOH- H_2O (14:6:1) to give thalictoside IX (**2**) (133 mg).

Thalictoside V (1). Powder. $[\alpha]_D^{25} = -16.5^\circ$ (MeOH; c 0.23). Neg. FAB-MS (m/z): 941 [M - H]⁻. ^1H NMR (pyridine- d_5): δ 0.21, 0.80 (each 1H, br s, H₂-19), 0.94, 1.27, 1.52, 1.63 and 1.69 (each 3H, s, H₃-28, H₃-18, H₃-29, H₃-26 and H₃-27), 1.63 (3H, d, J = 6.2 Hz, Rha H₃-6), 1.70 (3H, d, J = 6.2 Hz, Rha H₃-6), 2.65 (2H, m, H₂-23), 3.59 (1H, br d, J = 13.6 Hz, H-3), 4.03 (1H, m, H-22), 4.96 (1H, d, J = 7.7 Hz, Glc H-1), 5.47 (1H, br s, Rha H-1), 5.61 (1H, br t, H-24), 6.68 (1H, br s, Rha H-1). ^{13}C NMR (pyridine- d_5): see Table 1.

Table 1. ^{13}C NMR data for **1–5** (δ ppm, in pyridine- d_5)

C	1	2	3	4	5		1	2	3	4	5
1	30.5	30.7	30.8	30.5	30.7	3-O-					
2	30.0	30.5	30.3	30.0	30.2	Glc C-1	105.2	105.4	105.4	105.2	105.3
3	89.4	89.7	89.7	89.4	89.6		2	80.0	80.1	80.1	80.0
4	45.2	45.4	45.4	45.2	45.3		3	76.1	76.2	76.3	76.1
5	47.9	48.4	48.2	47.8	48.0		4	72.6	72.8	72.8	72.7
6	22.6	22.8	22.9	22.5	22.7		5	76.4	76.5	76.6	76.4
7	26.7	26.3	27.7	26.5	26.7		6	68.1	68.4	68.2	68.1
8	48.2	48.4	48.5	48.1	48.3	Rha C-1	100.7	100.9	100.9	100.8	100.9
9	19.8	19.9	20.1	19.7	19.9		2	71.9	72.0	72.2	71.6
10	26.2	26.4	26.4	26.3	26.4		3	72.0	72.3	72.3	72.0
11	26.2	26.7	26.5	26.2	26.3		4	74.3	74.5	74.4	74.3
12	36.2	35.9	35.8	35.8	35.9		5	69.1	69.1	69.5	69.0
13	45.2	45.6	45.5	45.2	45.3		6	18.5	18.6	18.5	18.6
14	48.8	48.7	48.8	48.5	48.6	Rha C-1	102.3	102.6	102.5	102.3	102.5
15	32.0	32.1	32.2	32.1	32.2		2	71.9	72.3	72.2	71.9
16	26.9	27.0	27.0	26.7	26.8		3	72.2	72.4	72.3	72.2
17	45.9	45.4	48.8	45.7	45.8		4	73.8	74.0	74.0	73.9
18	19.6	19.7	18.7	19.5	19.6		5	69.6	69.8	69.8	69.7
19	29.8	30.0	30.1	29.9	30.0		6	18.3	18.5	18.5	18.4
20	52.3	53.1	54.8	50.6	51.1	21-O-					
21	*	173.5	108.7	174.9	175.0	Glc C-1					
22	72.2	72.3	76.7	72.2	72.3		2		73.8		
23	35.2	35.5	79.0	35.3	35.4		3		78.5		
24	122.2	122.4	122.6	121.9	121.9		4		71.2		
25	132.8	133.2	136.1	133.0	133.1		5		77.7		
26	25.8	26.0	26.0	25.8	25.9		6		69.6		
27	18.0	18.3	19.8	17.9	18.0	Xyl C-1			105.7		
28	18.5	18.7	18.8	18.2	18.3		2		74.8		
29	19.7	19.9	19.9	19.7	19.9		3		78.1		
30	60.5	60.6	60.7	60.7	60.7		4		71.0		
OMe				54.6	52.4		5		66.8		

*Unobserved.

Thalictoside IX (2). Powder. $[\alpha]_D^{25} = 14$ (MeOH; *c* 1.00). Neg. FAB-MS (*m/z*): 1235 [M - H]⁻. HR-FAB-MS (*m/z*): 1259.6028 [M + Na]⁺ (Calcd for C₅₉H₉₆O₂₇Na 1259.6028). ¹H NMR (pyridine-*d*₅) δ : 0.20, 0.75 (each 1H, *br s*, H₂-19), 0.89, 1.17, 1.52, 1.66 and 1.71 (each 3H, *s*, H₃-28, H₃-18, H₃-29, H₃-26 and H₃-27), 1.65 (3H, *d*, *J* = 5.9 Hz, Rha H₃-6), 1.70 (3H, *d*, *J* = 6.2 Hz, Rha H₃-6), 2.75 (2H, *m*, H₂-23), 3.59 (1H, *br d*, *J* = 8.4 Hz, H-3), 4.92 (1H, *d*, *J* = 7.3 Hz, Xyl H-1), 4.97 (1H, *d*, *J* = 7.0 Hz, Glc H-1), 5.49 (1H, *br s*, Rha H-1), 5.58 (1H, *br t*, H-24), 6.25 (1H, *d*, *J* = 7.7 Hz, Glc H-1), 6.71 (1H, *br s*, Rha H-1). ¹³C NMR (pyridine-*d*₅): see Table 1.

Methylation of compound 1 with CH₂N₂. Thalictoside V (1, 13 mg) was dissolved in MeOH (1 ml). An Et₂O soln of CH₂N₂ (10 ml) was added and evapd after 1.5 hr. The residue (20 mg) was subjected to silica gel CC with CH₃Cl-MeOH-H₂O (90:10:1) to furnish the carboxy Me ester of thalictoside V (4, 15 mg) as a powder. $[\alpha]_D^{25} = 14.5$ (MeOH; *c* 0.50). HR-FAB-MS (*m/z*): 979.5242 [M + Na]⁺ (Calcd for C₄₉H₈₀O₁₈Na 979.5241). ¹H NMR (pyridine-*d*₅): δ 0.27, 0.82 (each 1H, AB *q*, *J* = 4.0 Hz, H₂-19), 0.88, 1.11, 1.55, 1.64 and 1.69 (each 3H, *s*, H₃-28, H₃-18, H₃-29, H₃-26 and H₃-27), 1.66 (3H, *d*, *J* = 6.2 Hz, Rha H₃-6), 1.73 (3H, *d*, *J* = 6.2 Hz, Rha H₃-6), 3.79 (3H, *s*, H-OMe), 4.99 (1H, *d*, *J* = 7.7 Hz, Glc H-1), 5.50 (1H, *br s*, Rha H-1), 5.56 (1H, *br t*, H-24), 6.72 (1H, *br s*, Rha H-1). ¹³C NMR (pyridine-*d*₅): see Table 1.

Selective cleavage of ester-glycoside linkage of compound 2. After a mixt. of thalictoside IX (2, 35 mg) in 2,6-

lutidine (2 ml) containing dry MeOH (1 ml) and LiI (60 mg) was heated to 110° for 8 hr, the reaction mixt. was diluted with 50% MeOH (10 ml) and passed through an Amberlite MB-3 (10 ml) column. The eluate was concd *in vacuo* and the resulting product chromatographed on Diaion HP-20 using 20% MeOH and MeOH as eluents. The 20% MeOH eluate was concd *in vacuo* and the resulting product in 2 N HCl-MeOH (2 ml) was heated at 100° for 1.5 hr and then neutralized with 3% KOH-MeOH to detect glucose and xylose on TLC. The MeOH eluate was concd and dissolved in MeOH (1 ml). An Et₂O soln of CH₂N₂ (5 ml) was added and evapd after 1.5 hr. The residue (25 mg) was subjected to silica gel CC with CH₃Cl-MeOH-H₂O (90:10:1) to furnish the carboxy Me ester of the prosapogenin (5, 13 mg) as a powder. $[\alpha]_D^{25} = 14.5^\circ$ (MeOH; *c* 1.30). ¹³C NMR (pyridine-*d*₅): see Table 1.

Acknowledgements—We are grateful to Prof. H. Okabe and Mr H. Hanazono of Fukuoka University for their measurement of HR-FAB-MS.

REFERENCES

1. Yoshimitsu, H., Hayashi, K., Kumabe, M. and Nozawa, T. (1994) *Chem. Pharm. Bull.* **42**, 101.
2. Ohtani, K., Mizutani, K., Kasai, R. and Tanaka, O. (1984) *Tetrahedron Letters* **25**, 4537.