

CARDENOLIDE GLYCOSIDES FROM *GOMPHOCARPUS SINAICUS*

HESHAM EL-ASKARY, JOSEF HÖLZL,* SAYED HILAL and EL-SAYEDA EL-KASHOURY

Pharmacognosy Department, Faculty of Pharmacy, Cairo University, 11562 Cairo, Egypt; *Institute für Pharmazeutische Biologie, Philipps-Universität, 35037 Marburg, Germany

(Received in revised form 26 April 1994)

Key Word Index—*Gomphocarpus sinaicus*; *Asclepias sinaica*; Asclepiadaceae; stems; cardenolide; calotropin.

Abstract—Two new cardenolide glycosides, one with a doubly-linked sugar, 15 β -hydroxy-5,6-dehydrocalotropin and the other with a singly linked sugar, coroglaucigenin-3-(6-deoxy- β -D-allopyranoside)-19-acetate, were isolated from the chloroform extract of the stems of *Gomphocarpus sinaicus*. Two other known cardenolides, were also isolated and identified as 5,6-dehydrocalotropagenin and 16 α -hydroxy-5,6-dehydrocalotropin. These compounds were isolated for the first time from *G. sinaicus*. Their identification was confirmed by 400 MHz 1 H and 13 C NMR, and EI mass spectral analysis.

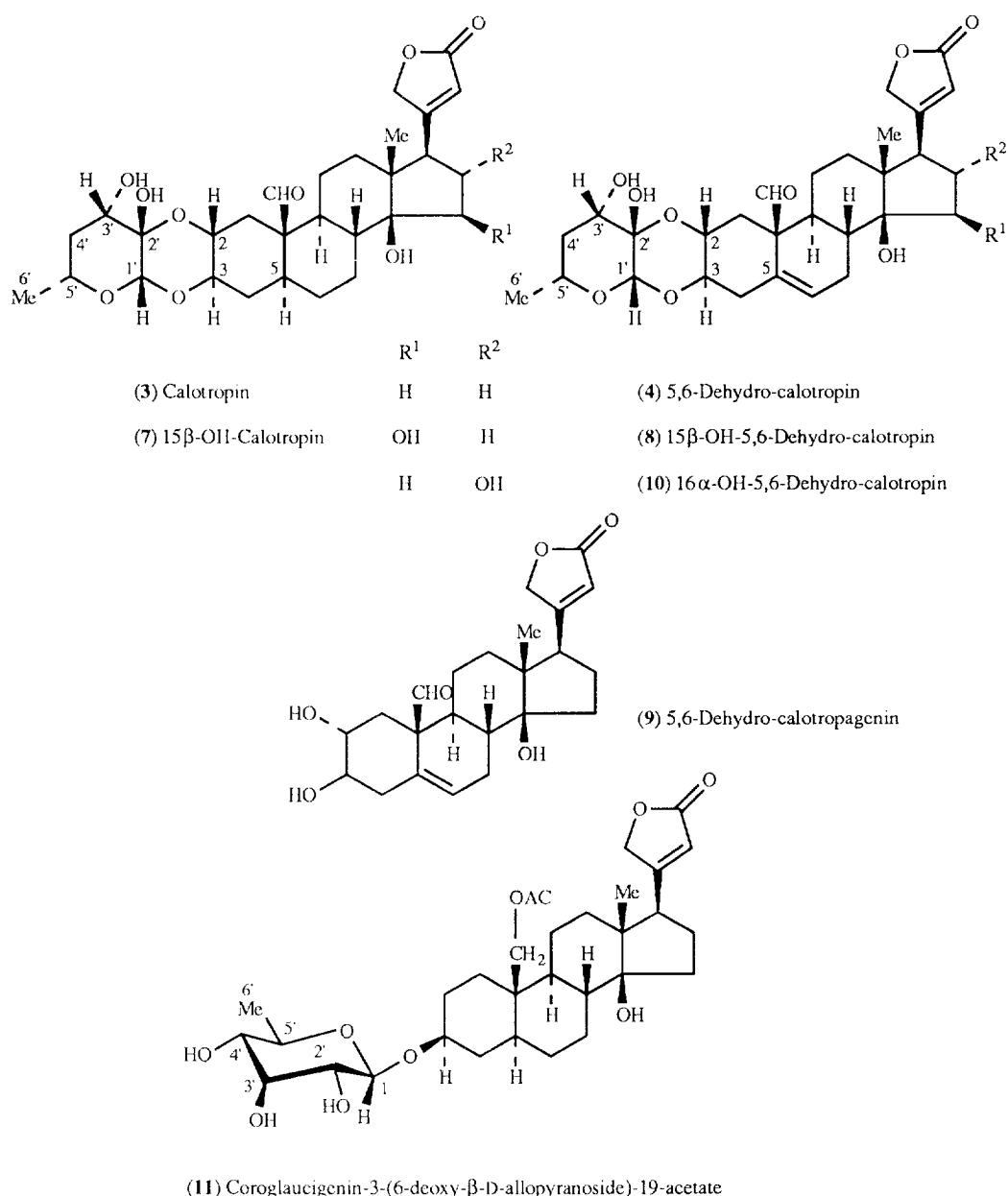
INTRODUCTION

Gomphocarpus (*Asclepias*) species are known to contain mainly 5 α -cardenolide glycosides, with a doubly-linked sugar [1-4], which are accompanied by Δ^5 -cardenolides [4]. We have previously [5] mentioned the isolation and identification of five cardenolide glycosides and two genins from the stems of *Gomphocarpus sinaicus* Boiss. We report now the isolation and identification of other cardenolides from the stems of this plant.

RESULTS AND DISCUSSION

Continued fractionation of the chloroform extract of stems of *G. sinaicus* afforded four other cardenolides including two new cardenolide glycosides, one with a doubly-linked sugar (**8**) and the other with a singly-linked sugar (**11**). In addition two compounds (**9** and **10**), which were previously isolated from *Asclepias vestita* [4] were obtained. The identity of the known cardenolides was established by comparison of their spectral data with literature data. Also, we report in this paper the 13 C NMR spectrum for **9**. The identification of the new cardenolides was confirmed by spectral data (EI MS, 1 H and 13 C NMR) (Tables 1 and 2) as described below.

The 1 H NMR spectrum of **8** (Table 1) was very similar to that of 15- β -hydroxy-calotropin (**7**) [5] but showed the presence of signals at δ 3.60 [dd, J = 4.7 (3' β , 4' β), 11.7 (3' β , 4' α) Hz], *s* at δ 4.58 (H-1' β) and *m* at δ 3.66 (H-5' β) [4]. This indicated that the 3'-OH is an α -hydroxyl group (calotropin derivatives) and the sugar moiety is similar to that of calotropin and 15 β -hydroxy-calotropin. The presence of a signal at δ 4.41 (*t*, J = 8.6, 8.7 Hz) [4], indicated the presence of a 15 β -hydroxyl group. The presence of signals, near δ (*m*) for a vinyl proton at position C-6 and


at δ 9.78 (*d*, J = 1.38 Hz) for H-19, are diagnostic for the Δ^5 -19-oxo function [4].

The 13 C NMR spectrum of **8** was very similar to that of 15 β -hydroxy-calotropin (**7**), except for the presence of two olefinic carbons C-5 and C-6, which resonate down-field at δ_c 139.0 and 123.5, respectively, indicating the presence of Δ^5 -double bond.

The mass spectrum of **8** showed that its genin ion (*m/z* 418) was 2 units less than that of 15 β -hydroxy-calotropin (**7**) (*m/z* 420) [5] so, was defined as 15 β -hydroxy-5,6-dehydrocalotropin.

The 1 H NMR spectrum of **11** (Table 1) showed signal at δ 2.04 (*s*), indicating the presence of an acetyl group [6]. Two signals at δ 4.23 and 4.38 (*d*, J = 12 Hz), indicated the presence of 19-alcoholic protons which are deshielded by an acetyl group. This indicated the acetylation of the 19-hydroxy group [2, 3]. All the vicinal protons in the sugar were interlinked by mutual decoupling (as indicated by the 1 H- 1 H COSY spectrum) and the magnitude of the vicinal coupling constants between protons (1',2' = 7.9 Hz; 2',3' = 3 Hz; 3',4' = 3 Hz; 4',5' = 9.5 Hz and 5',6' = 6.3 Hz) showed that the substituents at positions 2',4' and 5' of the pyranoside were equatorial, while that at 3' was axial. Also H-1' resonated downfield at δ 4.72 due to a 1-3 diaxial deshielding effect by an axial 3' β -hydroxy group [2, 4]. This confirmed that 3' has a β -hydroxy group. The 7.9 Hz *trans*-diaxial coupling between the anomeric proton (H-1') and the adjacent H-2', indicated that 2'-hydroxy group was equatorial (α). It also confirmed that the sugar moiety was a β -glycoside [2, 6].

The 13 C NMR spectrum of **11** (Table 2) showed signals for acetyl group carbons at δ_c 172.9 and 21.0. A signal for (CH_2) at δ_c 63.3, confirmed the presence of the 19-hydroxy group, which was deshielded by an acetyl group. The

absence of a signal for C-2' as a quartet carbon near δ_c 92 and the presence of a signal for C-1' as a methine carbon at δ_c 99.9 indicated that the sugar moiety was singly linked to the aglycone at the C-3 hydroxy group. The anomeric carbon C-1' resonated at δ_c 99.9 which indicated the presence of an adjacent equatorial 2'-hydroxy group [2].

The mass spectrum of **11** showed a fragmentation pattern of the genin which was in full agreement with that reported for the acetylated product of coroglaucigenin-3- β -D-glucoside [3]. The presence of a tertiary hydroxyl and acetoxy groups in the aglycone residue was clearly marked by the appearance of the characteristic peaks at *m/z* 397, 355 and 337.

From all of the above data, **11** was identified as coroglaucigenin-3-(6-deoxy- β -D-allopyranoside)-19-acetate (frugoside-19-acetate).

EXPERIMENTAL

Generally for instrumental procedures, plant material, extraction, fractionation and isolation see ref. [5], where the purified chloroform extract was fractionated by Vacuum Liquid Chromatographic (VLC) column on silica gel H (Merck). Elution was carried out by gradient addition of petrol, EtOAc and MeOH. Frs, each of 500 ml were collected. The eluted frs were classified according to TLC into 4 groups. Group A (3.1 g) eluted with 80% EtOAc-petrol. It was further fractionated by CC on silica gel G, eluted with 25–100% EtOAc-petrol, in frs each of 15 ml, then collected into 2 main frs: Fr. *a* (190 mg), see ref. [5], Fr. *b* (130 mg) eluted with 53% EtOAc-petrol. Analyt. HPLC using 25% MeCN-H₂O as mobile phase, showed 1 main peak *R*_f 24.10 (87.8%). This peak was sepd

Table 1. ^1H NMR (400 MHz) chemical shifts of **8–11** (δ , coupling constant J in Hz)

Proton	8	9	10	11	A	B
H α -1	1.08 <i>t</i> (12)	0.95 <i>t</i> (12)	1.10 <i>t</i> (12)	1.09 <i>t</i> (12)	—	—
H β -1	2.42 <i>dd</i> (5, 12)	2.47 <i>dd</i> (5, 12)	2.44 <i>dd</i> (5, 12)	—	—	—
H β -2	4.20 <i>m</i>	3.68 <i>m</i>	4.23 <i>m</i>	1.39 <i>m</i>	—	—
H α -3	3.90 <i>m</i>	3.43 <i>m</i>	3.95 <i>m</i>	3.85 <i>m</i>	3.70 <i>m</i>	—
H-6	6.05 <i>m</i>	6.10 <i>m</i>	6.09	—	—	—
H-15	4.41 <i>t</i> (8.6, 8.7)	—	2.00	—	—	—
			2.72 (2 <i>dd</i>)	1.87 <i>m</i>	—	—
H-16	2.56 <i>m</i>	—	4.60 <i>m</i>	2.26 <i>m</i>	—	—
H α -17	2.83 <i>dd</i> (6.4, 9.5)	2.86 <i>m</i>	2.65 <i>d</i> (5)	2.82 <i>dd</i> (5, 9.5)	2.78 <i>dd</i>	—
H β -18	0.81	0.80	0.76	0.89	0.92	—
H-19	9.78 <i>d</i> (1.38)	9.75	9.75 <i>d</i> (3)	4.23 <i>d</i>	3.79 <i>dd</i>	—
				4.38 <i>d</i> (12.3, 12)	3.90 <i>dd</i>	—
H-21	4.94 (2 <i>dd</i>)	4.94	4.82	4.95	4.80	—
	5.06 (18.6, 1.6)	5.05 (18.6, 1.6)	4.91 (18.6, 1.6)	5.03 (18.6, 1.6)	4.98 (18.6, 1.6)	—
H-22	5.95	5.95	5.98	5.89	5.88	—
H β -1'	4.58	—	4.57	4.72 <i>d</i> (7.9)	4.72 <i>d</i> (8)	4.67 <i>d</i> (8)
H α -2'	—	—	—	3.46 <i>dd</i> (3, 7.9)	3.42 <i>dd</i> (3, 8)	3.36 <i>dd</i> (3, 8)
H-3'	3.60 <i>dd</i> (4.7, 11.7)	—	3.67 <i>m</i>	4.02 <i>t</i> (3)	4.24 <i>m</i>	4.12 <i>t</i>
H-4'	1.73 <i>m</i>	—	1.84 <i>m</i>	3.15 <i>dd</i> (3, 9.5)	3.30 <i>dt</i> (3, 9.5)	3.24 <i>dd</i> (3, 9.5)
H β -5'	3.66 <i>m</i>	—	3.67 <i>m</i>	3.71 <i>dq</i> (6.3, 9.5)	3.70 <i>m</i>	3.67 <i>dq</i> (6, 9.5)
H α -6'	1.23 <i>d</i> (6)	—	1.23 <i>d</i> (6)	1.23 <i>d</i> (6.3)	1.32 <i>d</i> (6)	1.27 <i>d</i> (6)
MeCO	—	—	—	2.04	—	—
Solvent	CD ₃ OD (δ pm 4.75)	—	—	CDCl ₃	CDCl ₃ — CD ₃ OD (10:1)	—

A = Frugoside [6].

B = 3(6-deoxy- β -allopyranosyl) in aspecioside [6, 7].

by prep. HPLC using 40% MeOH–H₂O, giving **11** (36 mg). Group B (5.95 g), see ref. [5]. Group C (3.10 g) frs were eluted with 100% EtOAc. Analyt. HPLC using 10–35% MeCN–H₂O (gradient linear in 60 min), showed 3 main peaks R_t 20.19 (7.5%), 25.10 (41.8%) and 26.49 (6.4%). These peaks were sep'd by prep. HPLC using 30% MeOH–H₂O, to give **8** (16 mg), **7** (68 mg) [5] and an unknown compound (6 mg), respectively. Group D (2.13 g) frs were eluted with 1–5% MeOH–EtOAc. Analyt. HPLC using 10–35% MeCN–H₂O (as above), showed several peaks from which 2 peaks, R_t 18.53 (6.5%) and 14.67 (2.4%), were isolated by prep. HPLC using 32% MeOH–H₂O as mobile phase, to give **9** (28 mg) and **10** (2 mg), respectively.

15 β -Hydroxy-5,6-dehydrocalotropin (**8**). C₂₉H₃₈O₁₀, mp 198–202°, EIMS m/z (rel. int.): 418 ([G]⁺, 4.9), 400 ([G–H₂O]⁺, 16.8), 382 ([G–2H₂O]⁺, 19.2), 372 ([G

–H₂O–CO]⁺, 14.5), 354 ([G–2H₂O–CO]⁺, 31.2), 129 ([SH]⁺, 46), 128 ([S]⁺, 46), 91 (base peak, 100).

5,6-Dehydrocalotropagenin (**9**). C₂₃H₃₀O₆, mp 205–208°. EIMS m/z rel. int. 402 ([G]⁺, 1.5), 384 ([G–H₂O]⁺, 35.6), 369 ([G–H₂O–Me]⁺, 7.5), 91 (base peak, 100).

16 α -Hydroxy-5,6-dehydrocalotropin (**10**). C₂₉H₃₈O₁₀, mp 155–158°. EIMS m/z (rel. int.) 418 ([G]⁺, 1.0), 400 ([G–H₂O]⁺, 0.9) 382, 366, 354 ([G–2H₂O–CO]⁺, 3.4), 129 ([SH]⁺, 16.4), 128 ([S]⁺, 23), 44 (base peak, 100).

Frugoside-19-acetate (**11**). C₃₁H₄₆O₁₀, mp 148–152°. EIMS m/z (rel. int.) 578 ([M]⁺, 0.31), 433 ([GH]⁺, 2.1), 415 ([GH–H₂O]⁺, 10.5), 397 ([GH–2H₂O]⁺, 9.2), 355 ([GH–H₂O–HOAc]⁺, 22.5), 337 ([GH–2H₂O–HOAc]⁺, 32.4), 147 ([SH]⁺, 30.4), 145 ([S–H]⁺, base peak 100).

Table 2. ^{13}C NMR (100 MHz) chemical shifts (δ) of **8**, **9** and **11** compared with reported data

C	8	9	11	A	B
1	36.5	39.9*	35.7	33.0	
2	69.8	73.0	30.6	32.7	
3	73.0	75.8	78.9	70.7	
4	35.9	39.4	33.1	39.8	
5	139.0	141.0	45.7	45.2	
6	123.5	121.9	29.6	28.8	
7	30.5	30.4	28.5	28.1	
8	39.7	39.4	43.1	42.4	
9	45.5	45.5	50.8	50.8	
10	53.4	53.5	39.6	40.6	
11	24.3	24.5	23.5	23.4	
12	39.2	40.0*	41.1	39.8	
13	49.2	51.5	51.0	50.2	
14	84.0	85.8	86.2	84.4	
15	75.0	37.8	33.4	32.0	
16	34.3	28.6	28.0	27.3	
17	49.5	51.6	52.1	51.6	
18	17.0	16.4	16.4	16.3	
19	208.2	208.5	63.3	59.5	
20	177.1	177.9	178.3	176.2	
21	75.3	75.3	75.3	73.4	
22	118.3	118.0	117.8	117.6	
23	177.0	177.1	177.2	174.6	
1'	97.3		99.9		98.2
2'	92.7		72.9		69.6
3'	74.0		72.5		70.6
4'	39.6		74.4		72.6
5'	69.4		70.6		71.0
6'	21.4		18.2		17.6
C=O			172.9		
Me			21.0		
Solvent	CD ₃ OD	(δ ppm 49.0)		C ₆ D ₅ N	CDCl ₃ -CD ₃ OD (10:1)

*Signals within a vertical column may be reversed.

A=Coroglaucigenin [8].

B=3(6-deoxy- β -alopyranosyl) in aspecioside [7].

Acknowledgements—We are grateful to Dr T. Kämpchen and his co-workers and Dr G. Laufenberg (Institut für Pharmazeut. Chemie, Phillips-Universität, Marburg, Germany) for NMR and MS measurements. This work was supported in part by a grant from the Egyptian Mission Department of Ministry of Higher Education, Egypt.

REFERENCES

- Cheung, H. T. A., Chiu, F. C. K., Watson, T. R. and Wells, R. J. (1983) *J. Chem. Soc. Perkin Trans I* 2827.
- Cheung, H. T. A., Chiu, F. C. K., Watson, T. R. and Wells, R. J. (1986) *J. Chem. Soc. Perkin Trans I* 55.
- Jolad, S. D., Bates, R. B., Cole, J. R., Hoffmann, J. J., Siahaan, T. J. and Timmermann, B. N. (1986) *Phytochemistry* **25**, 2581.
- Cheung, H. T. A. and Nelson, C. J. (1989) *J. Chem. Soc. Perkin Trans I* 1563.
- El-Askary, H., Hözl, J., Hilal, S. and El-Kashoury, E. (1993) *Phytochemistry* **34**, 1399.
- Cheung, H. T. A., Nelson, C. J. and Watson, T. R. (1988) *J. Chem. Soc. Perkin Trans I* 1851.
- Cheung, H. T. A., Watson, T. R., Lee, S. M., McChesney, M. M. and Seiber, J. N. (1986) *J. Chem. Soc. Perkin Trans I* 61.
- Robien, W., Kopp, B., Schabl, D. and Schwarz, H. (1987) *Progress in NMR Spectroscopy* **19**, 131.