

TWO STEROIDS FROM *CALVATIA CYATHIFORMIS*

NOBUO KAWAHARA,* SETSUOKO SEKITA and MOTOYOSHI SATAKE

National Institute of Health Sciences (NIHS), Kamiyoga 1-18-1, Setagaya-ku, Tokyo 158, Japan

(Received 14 June 1994)

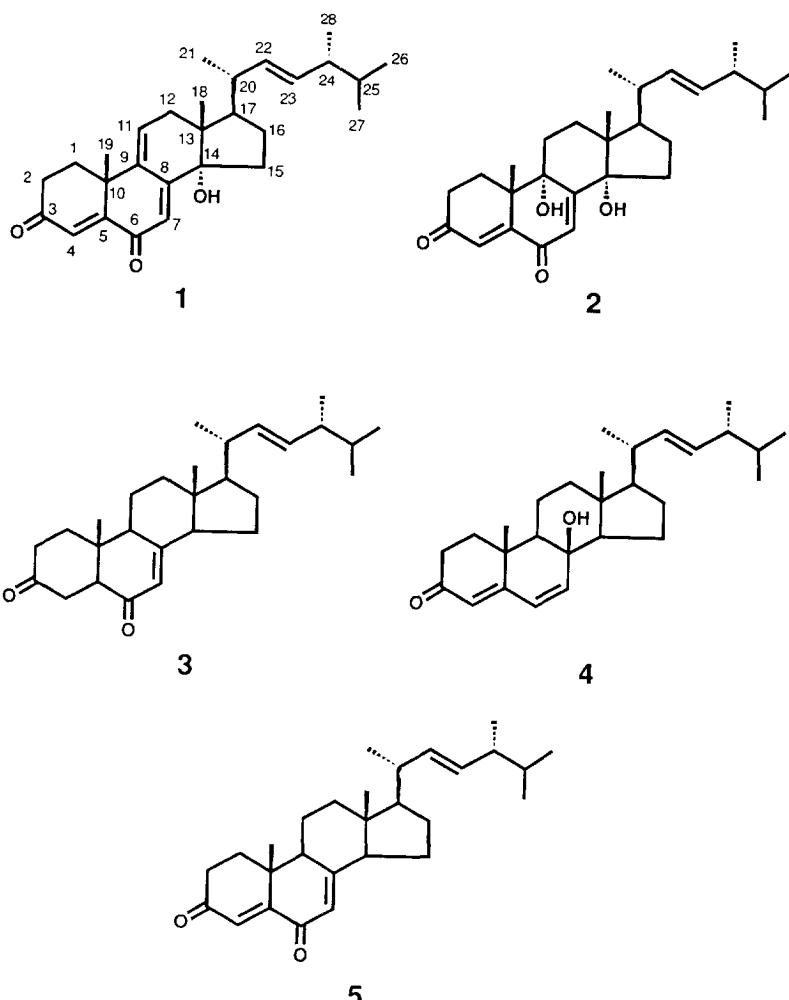
Key Word Index—*Calvatia cyathiformis*; Lycoperdaceae; steroid; calvasterol A; 14 α -hydroxyergosta-4,7,9,22-tetraen-3,6-dione; calvasterol B; 9 α ,14 α -dihydroxyergosta-4,7,22-trien-3,6-dione.

Abstract—Calvasterols A (14 α -hydroxyergosta-4,7,9,22-tetraen-3,6-dione) and B (9 α ,14 α -dihydroxyergosta-4,7,22-trien-3,6-dione), two new steroids, have been isolated from *Calvatia cyathiformis*. Their molecular structures have been defined by spectroscopic means and chemical correlations.

INTRODUCTION

In a previous paper [1], we reported the isolation of two new steroids designated as cyathisterone (**3**) and cyathisterol (**4**) from the dichloromethane extract of the fruiting body of *Calvatia cyathiformis* (Bosc.) Morg., a Chinese crude drug ('Ma Bo' in Chinese; 'Mabotsu' in Japanese), used in China as a haemostatic and pharyngodynia [2]. Further investigation of this extract led us to isolate two new steroids designated as calvasterols A (**1**) and B (**2**). The structural elucidation of the above compounds (**1** and **2**) is reported in this paper.

RESULTS AND DISCUSSION


Calvasterol A (**1**), had the molecular formula C₂₈H₃₈O₃ as shown by the HR mass spectrum, which had a molecular ion at *m/z* 422 [M]⁺. The IR absorption at 3450 and 1660 cm⁻¹ suggested the presence of a hydroxyl and an α,β -unsaturated carbonyl group. The ¹H NMR spectrum of **1** clearly showed two tertiary methyl signals at δ 0.76 and 1.46, four secondary methyl signals at δ 0.84, 0.85, 0.93 and 1.04, which suggested an ergostane skeleton [3]. This was supported by the fact that the chemical shift of the signals for the secondary methyl groups together with resonances for a *trans*-disubstituted double bond at δ 5.22 and 5.30 were consistent with those of ergosterol. On the other hand, two olefinic proton signals at δ 6.17 (1H, *s*) and 6.45 (1H, *s*) in the ¹H NMR spectrum of **1**, together with two tertiary carbon signals at δ 121.8 and 127.0, two quaternary carbon signals at δ 156.0 and 156.3 and two carbonyl carbon signals at δ 188.7 and 199.7 observed in the ¹³C NMR spectrum of **1** (Table 1) were similar to those of ergosta-4,7,22-triene-3,6-dione (**5**) [1, 4]. Also a negative Cotton effect at 275 nm and a positive Cotton effect at

234 nm, respectively, observed in the CD spectrum of **1** were closely similar to those of **5** (270 nm, negative; 234 nm, positive). All these data indicated that calvasterol A (**1**) was an ergosta-4,7,22-trien-3,6-dione (**5**) derivative including its stereochemistry.

An olefinic proton signal at δ 6.22 (1H, *dd*, *J* = 1.8, 6.6 Hz), which was only coupled with the methylene protons at δ 2.38 (1H, *dd*, *J* = 6.6, 18.3 Hz) and 2.72 (1H, *dd*, *J* = 1.8, 18.3 Hz), showed three-bond correlations with three quaternary carbon signals at δ 38.8 (C-10), 46.3 (C-13) and 156.0 (C-8) in the HMBC spectrum of **1** (Table 2). Thus the olefinic proton and methylene protons were assigned at C-11 and C-12, respectively. Also the assignment of a quaternary carbon signal (δ 84.7), which was conjoining a hydroxyl group, was confirmed as C-14. This was supported by the fact that the olefinic proton, which was assigned at C-7, was not coupled with any other protons. Finally, a proton signal at δ 2.72, which was assigned at H-12 α using a NOE correlation between δ 0.76 (H-18) and 2.38 (H-12 β) in the NOESY spectrum of **1**, was shifted down-field to δ 3.04 (pyridine-*d*₅) by the pyridine induced deshielding effect [5] indicating that a hydroxyl group and a proton (OH-14 α and H-12 α) occupied 1,3-*syn*-periplanar positions. Therefore, the configuration at C-14 has been assigned as *S*. These data led to the conclusion that calvasterol A (**1**) was elucidated as 14 α -hydroxyergosta-4,7,9,22-tetraen-3,6-dione.

Calvasterol B (**2**), had the molecular formula C₂₈H₄₀O₄ since the high resolution mass spectrum gave a molecular ion at *m/z* 440 [M]⁺. The IR absorption at 3450 and 1660 cm⁻¹ of **2** also suggested the presence of a hydroxyl and α,β -unsaturated carbonyl group. The ¹H NMR spectrum of **2** showed two tertiary methyl signals at δ 0.77 and 1.37, four secondary methyl signals at δ 0.84, 0.85, 0.93 and 1.05 and a *trans*-disubstituted double bond signal at δ 5.20 and 5.29. This information revealed the presence of an ergostane skeleton. The ¹H and ¹³C NMR spectra of **2** were similar to that of calvasterol

*Author to whom correspondence should be addressed.

A (1) except for the disappearance of an olefinic proton signal at δ 6.22 (1H, *dd*, J = 1.8, 6.6 Hz) in the ^1H NMR spectrum of **1** and the appearance of a secondary carbon signal δ 27.6 and a quaternary carbon signal at δ 74.4 in the ^{13}C NMR spectrum of **2** instead of a tertiary carbon signal at δ 132.9 and a quaternary carbon signal at δ 138.5 seen in the spectrum of **1** (Table 1). Thus the structure of **2** was considered to be the dihydroxy derivative of ergosta-4,7,22-trien-3,6-dione (**5**).

Hydroxylation of ergosta-4,7,22-trien-3,6-dione (**5**) was examined to give dihydroxysteroid, which was identical with calvasterol B (**2**), including the optical rotation. The assignment of two quaternary carbon signals (δ 74.4 and 87.0), which were joining a hydroxyl group, were confirmed as C-9 and C-14, respectively, using a HMBC correlation of **2** (Table 2). This was supported by the fact that the olefinic proton, which was assigned at C-7, was not coupled with any other protons. Furthermore, two proton signals at δ 2.79 (H-1 α) and 2.18 (H-12 α) were also shifted downfield to δ 3.04 and 2.48 (pyridine-*d*₅) by the pyridine induced deshielding effect [5] indicating that two hydroxyl groups and two protons (OH-9 α and H-1 α , OH-14 α and H-12 α) occupied 1,3-*syn*-periplanar posi-

tions. Therefore, the configurations at C-9 and C-14 have been assigned as *S*, respectively. From the above results, the structure of calvasterol B (2) was established as $9\alpha,14\alpha$ -dihydroxyergosta-4,7,22-trien-3,6-dione.

A large number of steroids, which have the ergostane skeleton, have been isolated from fungi. However, calvasterols A (1) and B (2) are the first examples of a naturally occurring hydroxylated ergosta-4,7,22-trien-3,6-dione type of steroid.

EXPERIMENTAL

General. Mps: uncorr. IR spectra were recorded in KBr discs. EI-MS were taken at 70 eV. ^1H NMR (600 MHz) and ^{13}C NMR (150 MHz) were recorded in CDCl_3 with TMS as int. standard. Low pressure LC (LP-LC) was performed on a Nihon Seimitsu NP-FX-20 in a glass column (300 \times 10 mm) packed with silica gel CQ-3 (30–50 μ ; Wako).

Isolation of metabolites 1 and 2. The fruiting body of *Calvatia cyathiformis* (4 kg) was extracted with CH_2Cl_2 , and the organic layer was dried (Na_2SO_4) and evapd in

Table 1. ^{13}C NMR data of calvasterols A (1) and B (2), and related compound 5 (in CDCl_3)

C	1	2	5
1	34.5	27.7	35.5
2	34.3	34.3	34.4
3	199.7	200.1	200.1
4	127.0	125.5	124.4
5	156.3	155.4	168.4
6	188.7	188.1	187.7
7	121.8	129.1	126.4
8	156.0	163.4	158.7
9	138.5	74.4	47.3
10	38.8	44.1	39.1
11	132.9	27.6	21.9
12	37.4	27.7	38.6
13	46.3	46.4	44.8
14	84.7	87.0	56.3 ^a
15	31.2	31.9	22.6
16	27.2	26.3	27.8
17	50.4	50.2	56.5 ^a
18	16.2	16.4	12.9
19	29.5	22.9	19.6
20	40.1	40.0	40.4
21	20.9	21.3	21.2
22	135.4	135.4	135.3
23	133.3	133.4	133.2
24	42.9	43.0	43.0
25	33.2	33.2	33.2
26	20.0	20.0	20.0
27	19.7	19.7	19.7
28	17.6	17.7	17.6

^aThe assignments may be reversed.

Table 2. Three-bond correlations (HMBC experiments) of the steroid ring of calvasterols A (1) and B (2)

C		
H	1	2
1	2*, 3, 5, 9, 10*, 19	2*, 3, 9, 10*, 19
2	1*, 3*, 4, 10	1*, 3*, 10
4	2, 5*, 6, 10	2, 5*, 6, 10
7	5, 9, 14	5, 9, 14
11	8, 10, 12*, 13	8, 12*
12	9, 11*, 13*, 14, 18	9, 11*, 13*, 14, 18
15	13, 14*, 16*, 17	14*
16	14, 15*, 20	14, 17*, 20
17	18, 20*	15, 16*, 18, 21
18	112, 13*, 14, 17	12, 13*, 14, 17
19	1, 5, 9, 10*	1, 5, 9, 10*

*Two-bond correlation.

sterol A (14 α -hydroxyergosta-4,7,9,22-tetraene-3,6-dione) (1) (10 mg).

Calvasterol A (1). Pale yellow needles (*n*-hexane- CHCl_3 , 1:1); mp 190–192° [α]_D²⁰ + 93° (CHCl_3 ; *c* 0.39). IR $\nu_{\text{max}}^{\text{KBr}}$ cm^{-1} : 3450 (OH), 1660 (CO). UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm (log ϵ): 250 (4.35), 340 (4.06). EI-MS (probe) 70 eV, *m/z* (rel. int.): 422.2815 [M]⁺ ($\text{C}_{28}\text{H}_{38}\text{O}_3$ requires 424.2820, 2), 404 [M – H_2O]⁺ (60), 280 (55), 265 (38). ¹H NMR (600 MHz, CDCl_3 , TMS as int. std.): δ 0.76 (3H, s, H-18), 0.84 (3H, d, *J* = 6.9 Hz, H-26), 0.85 (3H, d, *J* = 6.9 Hz, H-27), 0.93 (3H, d, *J* = 6.6 Hz, H-28), 1.04 (3H, d, *J* = 5.9 Hz, H-21), 1.44 (1H, *m*, H-16b), 1.46 (3H, s, H-19), 1.50 (1H, *m*, H-25), 1.77 (1H, *m*, H-15b), 1.89 (1H, *m*, H-24), 2.00 (2H, *m*, H-15a, H-16a), 2.09 (1H, *m*, H-20), 2.11 (1H, *m*, H-17), 2.28 (1H, *ddd*, *J* = 5.5, 13.6, 14.3 Hz, H-1a), 2.38 (1H, *dd*, *J* = 6.6, 18.3 Hz, H-12b), 2.42 (1H, *ddd*, *J* = 4.5, 5.1, 13.6 Hz, H-1b), 2.59 (1H, *ddd*, *J* = 4.5, 5.5, 19.4 Hz, H-2b), 2.65 (1H, *ddd*, *J* = 5.1, 14.3, 19.4 Hz, H-2a), 2.72 (1H, *dd*, *J* = 1.8, 18.3, H-12a), 5.22 (1H, *dd*, *J* = 7.7, 15.4 Hz), 5.30 (1H, *dd*, *J* = 7.7, 15.4 Hz, H-23), 6.17 (1H, s, H-7), 6.22 (1H, *dd*, *J* = 1.8, 6.6 Hz, H-11), 6.45 (1H, s, H-4). ¹³C NMR: Table 1. CD (MeOH; *c* 7.1 $\times 10^{-5}$): $\Delta\epsilon_{275}$ – 3.46, $\Delta\epsilon_{234}$ + 1.57.

Calvasterol B (2). Pale yellow needles; mp 173–175°; [α]_D²⁰ – 103° (CHCl_3 ; *c* 0.27). IR $\nu_{\text{max}}^{\text{KBr}}$ cm^{-1} : 3450 (OH), 1660 (CO). UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm (log ϵ): 266 (4.09). EI-MS (probe) 70 eV, *m/z* (rel. int.): 440.2932 [M]⁺ ($\text{C}_{28}\text{H}_{40}\text{O}_4$ requires 440.2926, 4), 422 [M – H_2O]⁺ (38), 297 (26), 229 (87). ¹H NMR (600 MHz, CDCl_3 , TMS): δ 0.77 (3H, s, H-18), 0.84 (3H, d, *J* = 6.9 Hz, H-26), 0.85 (3H, d, *J* = 6.9 Hz, H-27), 0.93 (3H, d, *J* = 6.9 Hz, H-28), 1.05 (3H, d, *J* = 6.6 Hz, H-21), 1.37 (3H, s, H-19), 1.46 (1H, *m*, H-16 β), 1.49 (1H, *m*, H-25), 1.65 (1H, *m*, H-15 β), 1.75 (1H, *br d*, *J* = 13.6 Hz, H-12 β), 1.82 (1H, *br d*, *J* = 13.9 Hz, H-1 β), 1.83 (1H, *m*, H-11 β), 1.88 (1H, *m*, H-24), 1.94 (1H, *m*, H-16 α), 1.97 (1H, *m*, H-15 α), 2.01 (1H, *m*, H-17), 2.09 (1H, *m*, H-11 α), 2.11 (1H, *m*, H-20), 2.18 (1H, *ddd*, *J* = 4.4, 13.2, 13.6 Hz, H-12 α), 2.46 (1H, *br s*, OH-9 α or 14 α), 2.50 (1H, *ddd*, *J* = 5.5, 13.9, 16.8 Hz, H-2 β), 2.59 (1H, *ddd*, *J* = 4.0, 5.1, 16.8 Hz, H-2 α), 2.79 (1H, *ddd*, *J* = 5.1, 13.9, 13.9 Hz, H-1 α), 4.22 (1H, *br s*, OH-9 α or 14 α), 5.20 (1H, *dd*, *J* = 8.4, 15.0 Hz, H-22), 5.29 (1H, *dd*, *J* = 7.7, 15.0 Hz, H-23), 6.19 (1H, s, H-7), 6.60 (1H, s, H-4). ¹³C NMR: Table 1. CD (MeOH; *c* 6.8 $\times 10^{-5}$): $\Delta\epsilon_{290}$ – 2.94, $\Delta\epsilon_{248}$ + 4.30.

Hydroxylation of ergosta-4,7,22-trien-3,6-dione (5). A 1 M K_2CO_3 soln (0.5 ml) was added to a stirred soln of ergosta-4,7,22-trien-3,6-dione (5) (37 mg) in Me_2CO (10 ml) and refluxed for 20 min. The reaction mixture was poured into ice- H_2O and extracted with CHCl_3 . The evapd residue was purified by LP-LC using *n*-hexane- EtOAc (5:1) to obtain 9 α ,14 α -dihydroxyergosta-4,7,22-trien-3,6-dione (2) (2 mg), [α]_D²⁰ – 87° (CHCl_3 ; *c* 0.06). This compound was identical with calvasterol B (2) on the basis of a comparison of the ¹H NMR and IR spectra and the optical rotation.

Acknowledgements—We are grateful to Dr K. Kawai of the faculty of Pharmaceutical Sciences, Hoshi University for mass measurements. This study was performed through Special Coordination Funds for Promoting

vacuo. The residue (13.5 g) was chromatographed on silica gel with C_6H_6 - Me_2CO (10:1) followed by LP-LC using *n*-hexane- EtOAc (5:1) to give a calvasterol B (9 α ,14 α -dihydroxyergosta-4,7,22-triene-3,6-dione) (2) (15 mg), and then *n*-hexane- EtOAc (4:1) to give calva-

Science and Technology (Joint Research Utilizing Scientific and Technological Potential in the Region) of the Science and Technology Agency of the Japanese Government.

REFERENCES

1. Kawahara, N., Sekita, S. and Satake, M. (1994) *Phytochemistry* (in press).
2. Chiang Su New Medical College (ed.), *Dictionary of Chinese Crude Drugs* (1977) p. 283. Shanghai Scientific Technologic Publisher, Shanghai.
3. Adler, J. O., Young, M. and Nes, W. R. (1977) *Lipids* **12**, 364.
4. Malorini, A., Minale, L. and Riccio, R. (1978) *Nouv. J. Chim.* **2**, 351.
5. Demarco, P. V., Farkas, E., Doddrell, E., Mylari, B. L. and Mulheirn, L. J. (1968) *J. Am. Chem. Soc.* **90**, 5480.