

SESQUITERPENE DILACTONES FROM *MIKANIA YPACARAYENSIS*

GRACIELA ZAMORANO, CÉSAR A. N. CATALÁN, JESÚS G. DÍAZ* and WERNER HERZ*

Instituto de Química Orgánica, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho 491, 4000 S. M. de Tucumán, Argentina; *Department of Chemistry, The Florida State University, Tallahassee, FL 32306-3006, U.S.A.

(Received 15 September 1994)

Key Word Index—*Mikania ypacarayensis*; Eupatorieae; Compositae; sesquiterpene lactones; sesquiterpene dilactones; germacranolides.

Abstract—Aerial parts of *Mikania ypacarayensis* afforded, in addition to mikanolide and related known sesquiterpene dilactones, three new dilactones, a derived lactone hydroxy ester and a known germacranolide.

INTRODUCTION

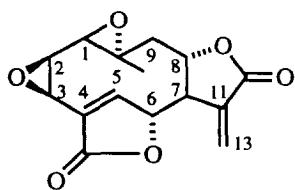
Within the large genus *Mikania* of more than 400 species [1] functionalized derivatives of the sesquiterpene dilactone isabelin (**4a**) so far appear to be confined, with one exception (*Mikania urticaefolia* [2]) to members of the *Mikania scandens* complex as defined by Holmes [3], although not all members of the complex produce dilactones of this type [4-6]. Following our recent work on *Mikania dusenii* [7] we have now studied *Mikania ypacarayensis* Holmes and McDaniel, another member of the complex found in north-eastern Argentina and in southern Brazil and Paraguay.† Isolated from the aerial parts were mikanolide (**1a**) [9, 10], and 11 β H,13-dihydromikanolide (**1b**) [9], the two main lactone constituents, as well as deoxymikanolide (**2a**) [9], scandenolide (**2b**) and its 11 β H,13-dihydro derivative **2c** [9, 10], anhydroscandenolide (**3**) [2], 3 β -hydroxy- and 3 β -acetoxyisabelin (**4b,c**) [11] as well as the 3-methoxy analogue **4d**, miscandenin (**5a**) [9] and its 11 β ,13-dihydro derivative **5b**, the hydroxy ester lactone **6**, monolactone **7** previously found in *M. dusenii* [9] and the dilactones **8a** and **8b**. Compounds **4d**, **5b**, **6** and **8a,b** have not been described previously.

DISCUSSION

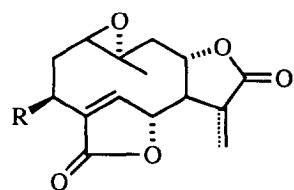
The structure of **4d**, which like methyl ester **6** is possibly an artefact, was easily deduced by comparing its ^1H NMR spectrum (Table 1) with the spectra of **4b** and **4c**, the OMe-3 β configuration being apparent from the coupling constants involving H-3 which is not only vicinally coupled to H-2a,b, but also allylically coupled to H-5 and homoallylically to H-6. The structure of **5b**

which was the major component of a binary mixture also containing **5a** was deduced in the same way, the value of $J_{7,11}$ (12 Hz) indicating α -orientation of the methyl group on C-11. This is also true for dihydros scandenolide (**2c**) (Table 1). Although this substance has been reported earlier from *Mikania scandens* [9] and from *M. micrantha* [12], high resolution NMR data for this assignment have not appeared previously.

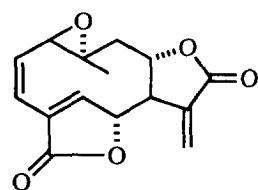
The structure of ester **6** was clear from the mass spectrum which indicated incorporation of the elements of methanol into **5a** and from the ^1H NMR spectrum (Table 1) which when compared with that of **5a** exhibited the presence of a methoxyl singlet, a significant diamagnetic shift of the H-9b resonance and changes in the appearance of the H-13a,b signals whose allylic coupling to H-7 was reduced to less than 1 Hz.

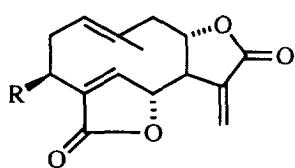

Finally, we deal with **8a** and **8b** which were closely related to mikaperiplocolide (**8c**) from *Mikania periplocifolia* [13], another member of the *M. scandens* complex. In the case of **8a** the empirical formula and comparison of the NMR spectrum (Table 1) with the NMR spectrum of **8c** [13] showed that there was no hydroxyl group on C-3; in the case of **8b** the C-3 hydroxyl group was acetylated. The biogenesis of **8a-8c** presumably involves action of a dioxygenase on a precursor of type **4** in a manner simulated chemically by the reaction of $^1\text{O}_2$ with germacra-1(10), 4-dienolides.

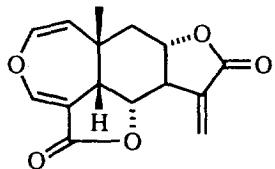
EXPERIMENTAL

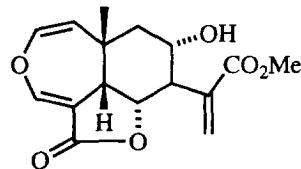

General. For sepn of mixts, HPLC with a differential refractometer was used. The columns employed were (A) a Beckman C18 (5 μ , 10 \times 250 mm) and (B) a Phenomenex Maxsil 10C8 (10 μ , 10 \times 500 mm). Retention times were measured from the solvent peak.

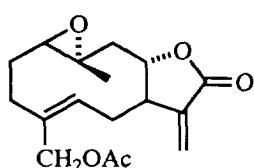
Plant material. Aerial parts of *Mikania ypacarayensis* Holmes and McDaniel were collected at the flowering stage in May 1989 near Ituazaingó, Corrientes province,

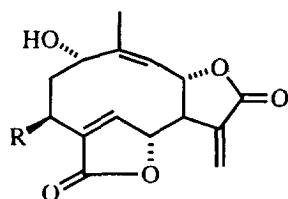

†The old binomial *M. trachyleura* B. L. Robins. for this species is illegitimate [8].


1a
1b 11 β H, 13-dihydro


2 a R=H
b R=OAc
c R=OAc, 11 β H, 13-dihydro


3


4 a R=H
b R=OH
c R=OAc
d R=OMe


5 a
b 11 β H, 13-dihydro

6

7

8 a R=H
b R=OAc
c R=OH

Argentina. A voucher specimen (C. Catalán 92) is deposited in the Instituto Miguel Lillo, Tucumán.

Extraction and isolation. Flowers and leaves (245 g) were extracted with CHCl_3 at room temp. for 4 days to give 17 g of crude extract which was suspended in EtOH (150 ml) at 60°, diluted with H_2O (110 ml) and extracted successively with hexane (3×100 ml) and CHCl_3 (3×100 ml). Evapn of the hexane extract at red. pres. gave 4.5 g of residue which was not studied further. Evapn of the CHCl_3 extract gave 6.5 g of residue which was chromatographed over silica gel (300 g) using CHCl_3 with increasing amounts of EtOAc (15–45%), 148 frs being collected which were monitored by TLC.

Frs 22–33 (113 mg) were combined and processed by HPLC (using column B, $\text{MeOH}-\text{H}_2\text{O}$, 3:2, 2 ml min^{-1}). The peaks obtained were rechromatographed on column A ($\text{MeOH}-\text{H}_2\text{O}$, 4:3, 2 ml min^{-1}) to give 2.3 mg of **6** as a gum, R_t 7.5 min, and 5.3 mg of miscandenin (**5a**) as a crystalline solid, mp 240–245° (dec.), R_t 9 min, identified by comparison with authentic material.

Frs 36–43 (137 mg) were combined and chromatographed by HPLC using column B ($\text{MeOH}-\text{H}_2\text{O}$, 1:1, 2 ml min^{-1}). The peaks obtained were rechromatographed on column A ($\text{MeOH}-\text{H}_2\text{O}$, 1:1, 2 ml min^{-1}) to give 1 mg of a mixture of unidentified lactones, R_t 13.5 min, 1.2 mg of a mixture of **4b** and **7**, R_t 17.5 min, 1 mg of a mixture of **5a** and **5b**, R_t 13 min, 0.5 mg of **4c**, R_t 16 min, 1 mg of **4d**, R_t 18 min, and 1.5 mg of mikanolide, (**1a**), R_t 3.5 mg.

Frs 44–49 (754 mg) were recrystallized from heptane– EtOAc (1:4) to give 317 mg of mikanolide, mp 216–220°, identified by comparison with authentic material. Additional mikanolide could be recovered from the mother liquor.

Frs 50–59 (254 mg) were recrystallized from heptane– EtOAc (1:4). A portion of this material was purified by HPLC using column A ($\text{MeOH}-\text{H}_2\text{O}$, 2 ml min^{-1}) to give 15 mg of a mixture of **1a** and **1b**, R_t 7.5 min. Frs 60–73 (187 mg) were combined. TLC (heptane– EtOAc , 1:1) afforded 37 mg of a lactone mix-

Table 1. ^1H NMR spectra of **2c**, **4d**, **5b**, **6** and **8a,b** (500 MHz, CDCl_3)

H	2c *	4d	5b †	6 *	8a	8b
1	3.02 <i>dd</i> (11.5, 2.5)	5.13 <i>dquint</i> (12.5, 1)	4.78 <i>d</i> (8.5)	4.82 <i>br dd</i> (8, 8, 1)	4.40 <i>br d</i> (9.5)	4.67 <i>br d</i> (9.5)
2a	2.25 <i>ddd</i> (15, 2.5, 2.5)	2.65 <i>ddd</i> (13.5, 12.5, 4.5)	6.16 <i>d</i> (8.5)	6.12 <i>br d</i> (8)	2.62 <i>m</i>	2.71 <i>ddd</i> (15, 9.5, 4)
2b	1.77 <i>ddd</i> (15, 11.5, 4)	2.50 <i>ddd</i> (13.5, 2, 1.5)	—	—	2.62 <i>m</i>	2.02 <i>br dd</i> (15, 3)
3	5.73 <i>dddd</i> (4, 2.5, 1.5, 1.5)	4.54 <i>dddd</i> (4.5, 2, 1.5, 1.5)	7.51 <i>br d</i> (3)	7.47 <i>br d</i> (3)	1.81 <i>br ddd</i> (14.5, 4, 4)	5.78 <i>dddd</i> (3, 2, 1.5, 1.5)
5	7.96 <i>t</i> (1.5)	7.06 <i>t</i> (1.5)	3.47 <i>br dd</i> (7.3)	3.42 <i>br ddd</i> (7.5, 3, 1.5)	7.09 <i>t</i> (1.5)	7.15 <i>t</i> (2)
6	5.42 <i>q</i> (1.5)	5.31 <i>q</i> (1.5)	4.65 <i>dd</i> (10.5, 7)	4.94 <i>br dd</i> (10, 7.5)	5.34 <i>brq</i> (1.5)	5.42 <i>q</i> (1.5)
7	2.69 <i>br dd</i> (12.5, 10.5, 1.5)	3.27 <i>dddd</i> (8.5, 3.5, 3.5, 1.5)	1.78 <i>ddd</i> (12, 11, 11)	2.18 <i>br dd</i> (10, 7.5)	3.23 <i>dddd</i> (10, 3, 3, 1)	3.27 <i>dddd</i> (10, 3, 3, 1)
8	4.62 <i>ddd</i> (10, 10, 4.5)	4.46 <i>ddd</i> (8.5, 8, 4)	4.01 <i>ddd</i> (12, 12, 3.5)	4.14 <i>ddd</i> (11, 10, 4)	4.90 <i>t</i> (10.5)	4.89 <i>t</i> (10.5)
9a	2.07 <i>dd</i> (14.5, 10)	3.10 <i>ddd</i> (14, 8, 1.5)	2.19 <i>br dd</i> (12.5, 3.5)	1.94 <i>ddd</i> (13, 4, 1.5)	5.18 <i>br d</i> (10)	5.22 <i>br d</i> (10.5)
9b	2.01 <i>dd</i> (14.5, 4.5)	1.92 <i>dd</i> (14, 4)	1.81 <i>t</i> (12)	1.59 <i>dd</i> (13, 11.5)	—	—
11	2.95 <i>dq</i> (12.5, 7)	— (12, 7)	2.55 <i>dq</i>	—	—	—
13	1.37 <i>d</i> ‡ (7)	6.49 <i>d</i> (3.5)	1.37 <i>d</i> ‡ (7)	6.44 <i>br d</i> (1)	6.36 <i>dd</i> (3.5, 0.5)	6.39 <i>br d</i> (3)
		5.89 <i>d</i> (3.5)		5.83 <i>br s</i>	5.67 <i>dd</i> (3.5, 0.5)	5.69 <i>d</i> (3)
14‡	1.16 <i>s</i>	1.61 <i>br s</i>	1.31 <i>s</i>	1.30 <i>s</i>	1.83 <i>br s</i>	1.83 <i>d</i> (1.5)
Ac‡	2.15 <i>s</i>			3.70 <i>s</i> (OMe)		2.20 <i>s</i>

*In acetone- d_6 .†From mixture with **5a**.

‡Intensity three protons.

ture which was processed by HPLC using column A ($\text{MeOH}-\text{H}_2\text{O}$, 2 ml min^{-1}) to give 8 mg of crystalline **3**, R_t 7.5 min, 4 mg of crystalline scandenolide (**2b**), R_t 8.4 min, both identified by comparison with authentic material, and 2 mg of a complex mixture, R_t 11.4 min.

Frs 74–77 (71 mg) were combined and rechromatographed over silica gel (10 g) using heptane–EtOAc 1:1, 25-ml frs being collected. Frs 8–10 (15 mg) of the rechromatogram were scandenolide (**2b**). Frs 12–14 (9 mg) were deoxymikanolide (**2a**) identified by comparison with authentic material, frs 18–20 (5 mg) were crude **8a** and frs 22–25 were crude **8b**.

Several recrystallizations of frs 78–92 (366 mg) of the original chromatogram from heptane–EtOAc afforded 32 mg of pure **2a**. The residue from the mother liquors contained a mixture of **2a** and **2c**. Frs 93–109 (223 mg) of the original chromatogram on repeated recrystallization from heptane–EtOAc afforded 5 mg of pure **2c** as a crystalline solid, mp 282–285°, identified by mass and ^1H NMR spectra. More, slightly impure **2c** could be recovered from the mother liquors. Frs 110–148 (223 mg)

of the original chromatogram on repeated processing by HPLC afforded only complex lactone mixtures.

3 β -Methoxyisabelin (4d). Gum; PCI-MS m/z (rel. int.) 291 [$\text{M} + \text{H}$]⁺ (100); ^1H NMR spectrum in Table 1.

11 $\beta\text{H},13\text{-dihydromiscandenin (5b).}$ Obtained only as the major component of a mixt. also containing **5a**; PCI-MS m/z (rel. int.) 277 [$\text{M} + \text{H}$]⁺ of **5** (100), 275 (25, [$\text{M} + \text{H}$]⁺ of **5a** (25); ^1H NMR spectrum in Table 1.

Methyl ester 6. Gum; PCI-MS m/z (rel. int.): 307 [$\text{M} + \text{H}$]⁺ (100); IR ν^{film} cm^{-1} : 1754, 1657; ^1H NMR spectrum in Table 1.

3-Dehydroxymikaperiplocolide (8a). Mp 235–239°; PCI-MS m/z (rel. int.): 277 [$\text{M} + \text{H}$]⁺ (100), 259 (88); IR ν^{KBr} cm^{-1} : 3450, 1750, 1650; ^1H NMR spectrum in Table 1.

3-Acetoxyxymikaperiplocolide (8b). Mp 237–239°; IR ν^{KBr} cm^{-1} : 3450, 1750, 1650. The sample was lost in an attempt to determine the MS.

Acknowledgements—Work in Tucumán was supported by grants from Consejo de Investigaciones de la Universidad Nacional de Tucumán. G.Z. thanks the Consejo

Nacional de Investigaciones Científicas y Técnicas de la República Argentina for a fellowship. The authors thank Lic. M. R. S. Alvarez for collaborating in the experimental work.

REFERENCES

1. King, R. N. and Robinson, H. (1987) *The Genera of the Eupatorieae (Asteraceae)*, Monographs in Systematic Botany, Vol. 22, pp. 418–426.
2. Gutiérrez, A. B., Oberti, J. C. and Herz, W. (1988) *Phytochemistry* **27**, 938.
3. Holmes, W. C. (1975) Dissertation. Mississippi State University, Mississippi.
4. Herz, W. and Kulanthaivel, P. (1985) *Phytochemistry* **24**, 1761.
5. Herz, W. (1986) *Stud. Org. Chem.* **26**, 143.
6. Cuenca, M. del R., Borkosky, S., Catalán, C. A. N., Goedken, V. L., Díaz, J. G. and Herz, W. (1993) *Phytochemistry* **32**, 1509.
7. Zamorano, G., Catalán, C. A. N., Díaz, J. G. and Herz, W. (1994) *Phytochemistry* **37**, 187.
8. Holmes, W. C. and McDaniel, S. M. (1975) *Phytologia* **31**, 273.
9. Herz, W., Subramaniam, P. S., Santhanam, P. S., Aota, K. and Hall, A. L. (1970) *J. Org. Chem.* **35**, 1453.
10. Cox, P. J., Sim, G. A., Roberts, J. S. and Herz, W. (1973) *J. Chem. Soc. Chem. Commun.* 423.
11. Bohlmann, F., Tsankova, King, R. M. and Robinson, H. (1984) *Phytochemistry* **23**, 1099.
12. Cuenca, M. del R., Bardón, A., Catalán, C. A. N. and Kokke, W. C. M. C. (1988) *J. Nat. Prod.* **51**, 625.
13. Gutiérrez, A. B., Oberti, J. C., Kulanthaivel, P. and Herz, W. (1985) *Phytochemistry* **24**, 2967.