

GERMACROLIDES FROM *PERYMENTIUM BERLANDIERI**

EMMA MALDONADO,† CLAUDIA MANCERA,‡ GUADALUPE FIALLEGA and ALFREDO ORTEGA

Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Coyoacán, 04510, México; †Departamento de Química Orgánica, División de Estudios Superiores de la Facultad de Ciencias Químicas e Industriales, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001, Cuernavaca, Morelos, México

(Received in revised form 16 August 1994)

Key Word Index—*Perymenium berlandieri*; Compositae; Heliantheae; sesquiterpene lactones; germacrolides.

Abstract—Two germacrolides have been isolated from the aerial parts of *Perymenium berlandieri*. Their structures were established as 15-acetylstenophyllolide[15-acetoxy-9 β -hydroxygermacra-1(10),4,11(13)-trien-6 α ,12-olide] and 15-acetoxy-8 α -hydroxycostunolide[15-acetoxy-8 α -hydroxygermacra-1(10),4,11(13)-trien-6 α ,12-olide] by spectroscopic means and chemical transformations. A guaianolide was formed by spontaneous cyclization of 15-acetoxy-8 α -hydroxycostunolide.

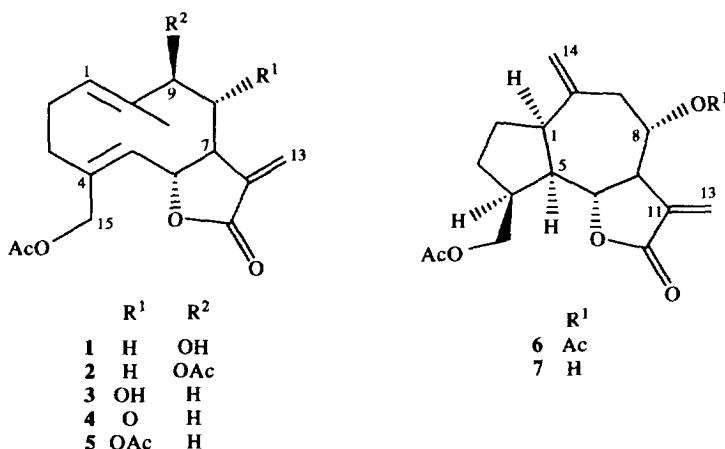
INTRODUCTION

The secondary metabolites isolated from the *Perymenium* species analysed so far have been kaurane derivatives [1-3] and sesquiterpene lactones [2-5]. The lactones are structurally varied and include eudesmanolides [4, 5], melampolides [2, 5] as well as germacrolides [2, 3]. In a continuation of our chemical studies of the genus *Perymenium*, we have analysed the aerial parts of *P. berlandieri* DC. This investigation resulted in the isolation of the new natural product 15-acetylstenophyllolide (**1**) and 15-acetoxy-8 α -hydroxycostunolide (**3**) which had been obtained from cnicin [6] and isolated from *Dicoma schinzii* [7]. Compound **3** undergoes a spontaneous cyclization process yielding the guaianolide **7**.

RESULTS AND DISCUSSION

Compound **1** showed IR absorption indicative of the presence of hydroxyl (3475 cm^{-1}), α,β -unsaturated- γ -lactone (1762 cm^{-1}), saturated ester (1739 cm^{-1}) and double bond ($1662, 966\text{ cm}^{-1}$) functionalities. Its structure was formulated as that of a germacrolide on the basis of the characteristic ^1H NMR signals for H-1, H-5, H-6, H-9, H-13, H-14 and H-15, which were assigned by COSY experiments (Table 1). The coupling constants of H-5, H-6 and H-13 established a Z-geometry for the C-4 double bond and a *trans*-C-6 lactone ring closure. The position of the acetoxy group was inferred from the chemical shift of the H-15 singlet signal, while the free hydroxyl group was located on C-9 with a β -orientation taking into account the values of the H-9 coupling

constants ($J = 10.5$ and 3 Hz). The ^{13}C NMR signals are in agreement with structure **1** for this compound.


Upon acetylation **1** gave **2**, which had been previously reported as stenophyllolide diacetate [8] or idomain [9]. The structure of this compound was corroborated by X-ray analysis [8]. Comparison of the spectral data of these diacetates established their identity and therefore corroborated the structure of **1** as 15-acetylstenophyllolide.

Compound **3** was obtained as crystals and its structure established as the previously reported 15-acetoxy-8 α -hydroxycostunolide [6, 7] from its spectral data. Additional proof for structure **3** was provided by the preparation of the oxo derivative **4**, in whose ^1H NMR spectrum the C-9 protons appeared as an AB system. Furthermore, the H-7 signal was shifted to lower field ($\delta 4.02$) as expected for an allylic proton, α to a carbonyl.

On standing, the colourless crystals of **3** became yellowish. TLC revealed its partial transformation into a mixture, with the major component being a less polar compound, which could not be isolated. Acetylation of this mixture gave the derivatives **5** and **6**. The structure of **5** was formulated as 8 α ,15-diacetoxycostunolide from its spectral data. Derivative **6** was determined to be an 8,15-diacetoxyguaianolide based on the following evidence. Its ^1H NMR spectrum did not show the characteristic signals for a germacradiene (H-1, H-5 and vinylic methyl group), instead, two broad singlets at $\delta 5.11$ and 5.02 showed the presence of an exomethylene group attached to C-10 (^{13}C NMR: $\delta 142.1$ s, C-10; $\delta 116.6$ t, C-14). Furthermore, the signals for H-1 and H-5 were located at $\delta 2.92$ and 2.34 , respectively (COSY spectrum), and signals for C-1 and C-5 appeared as doublets at $\delta 48.6$ and 46.8 , respectively. The signals for the C-15 protons, geminal to the acetoxy group, appeared as the AB part of an ABX system at $\delta 4.23$ and 4.09 , and were coupled with

*Contribution No. 1255 of the Instituto de Química, UNAM.

†Author to whom correspondence should be addressed.

Table 1. ^1H NMR spectral data of 1-6 (200 MHz, CDCl_3 , TMS as int. standard)

H	1	2	3	4	5	6†
1	5.16 br dd 9.5, 6	5.27 br dd 9.5, 6	4.91 br dd 11, 4.5	5.20 br dd* ~ 10, 3.3	4.8-5.1* 5.24 d*	2.92 dt 7.4, 6.6
5	4.83 br d	4.87 br d	4.81 d	5.24 d*	4.8-5.1*	2.43 m*
10	9	9	9	10	4.8-5.1*	10.5, 6.6
6	4.59 dd 10, 9	4.61* 9	4.60 t 9, 3	4.89 dd 10, 9		4.07 dd 10.5, 9.5
7	2.69 m 14.5, 10.5	2.74 br t 14.5, 10	2.81 br tt 11, 9, 3	4.02 dt 9, 3	3.00 br s 4.8-5.1*	3.06 br tt 9.5, 3.3
8	1.88 dt 14.5, 10.5	1.94 dd 14.5, 10	4.03 ddd 11, 9, 3			4.91 m*
9	4.22 dd 10.5, 3	5.23 dd 10, 3	2.64 br d 12.6	3.44 d 9.5		2.79 dd 13, 5.4
			2.38 dd 12.6, 11	3.00 br d 9.5		2.10*
13	6.30 d 3.5	6.32 d 3.5	6.34 dd 3.2, 1.5	6.34 d 3.5	6.34 dd 3.5, 1	6.23 d 3.3
13'	5.62 d 3.2	5.58 d 3.2	6.31 dd 3, 1.5	5.47 d 3	5.81 dd 3, 1	5.67 d 2.4
14	1.41 d 1	1.42 d 1	1.38 d 1	1.50 s	1.49 s	5.11 br s 5.02 br s*
15	4.61 s	4.61 s	4.53 s	4.43 s	4.58 s	4.23 dd 11, 5.5 4.09 dd 11, 9
OAc	2.10 s	2.10 s, 2.07 s	2.04 s	2.06 s	2.08 s 2.07 s	2.12 s 2.03 s

*Partially superimposed signals.

†H-4 signal at δ 2.54 as multiplet.

a partially superimposed multiplet at δ 2.54 (X-proton) assigned to H-4. The relative configuration of **6** was inferred from the observed *J* values as compared with similar compounds [10, 11], except that of C-4.

From the above data we can infer that germacrolide **3** produced the guaianolide **7**, which upon acetylation gave the derivative **6**. Considering the cyclization reaction depicted in Fig. 1 as a stereospecific process, probably catalysed by traces of acid, in which **3** adopts the preferred UU conformation [12], the stereochemistry at C-4 in **7** and consequently in **6**, can be proposed with the

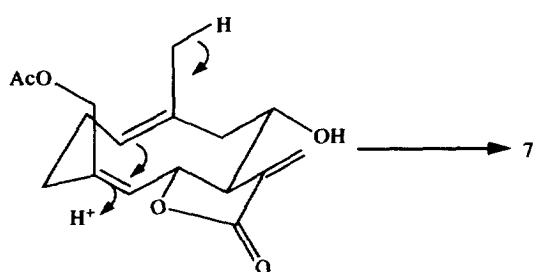

Fig. 1. Acid catalysed rearrangement of **3** to form **7**.

Table 2. ^{13}C NMR spectral data of **1**, **3** and **6** (50 MHz, CDCl_3 , TMS as int. standard)

C	1	3	6
1	128.6 <i>d</i>	128.8 <i>d</i>	48.6 <i>d</i> ^a
2	26.0 <i>t</i>	26.4 <i>t</i>	28.2 <i>t</i> ^b
3	35.5 <i>t</i>	35.2 <i>t</i>	28.0 <i>t</i> ^b
4	138.1 <i>s</i> ^a	138.1 <i>s</i> ^a	42.2 <i>d</i>
5	130.8 <i>d</i>	138.8 <i>d</i>	46.8 <i>d</i> ^a
6	79.5 <i>d</i>	75.9 <i>d</i>	77.1 <i>d</i>
7	47.3 <i>d</i>	54.7 <i>d</i>	50.5 <i>d</i>
8	35.2 <i>t</i>	71.0 <i>d</i>	74.1 <i>d</i>
9	79.2 <i>d</i>	52.5 <i>t</i>	41.1 <i>t</i>
10	139.4 <i>s</i> ^a	138.8 <i>s</i> ^a	142.1 <i>s</i>
11	138.4 <i>s</i> ^a	136.3 <i>s</i> ^a	136.7 <i>s</i>
12	170.7 <i>s</i>	170.7 <i>s</i>	171.0 <i>s</i>
13	120.5 <i>t</i>	126.8 <i>t</i>	123.2 <i>t</i>
14	10.7 <i>q</i>	17.0 <i>q</i>	116.6 <i>t</i>
15	61.5 <i>t</i>	61.8 <i>t</i>	64.1 <i>t</i>
MeCO	20.9 <i>q</i>	20.9 <i>q</i>	21.2 <i>q</i> 21.0 <i>q</i>
MeCO	169.7 <i>s</i>	170.5 <i>s</i>	169.8 <i>s</i>

^{a,b}Values in any vertical column may be interchanged.

CH_2OAc residue β -oriented. Guianolides **6** and **7** are both unstable and undergo total decomposition.

Perymenium berlandieri showed a chemical composition in accordance with that observed in other *Perymenium* species, in which C-14 and/or C-15-oxygenated germacrolides are present.

EXPERIMENTAL

Dried and powdered aerial parts (480 g) of *Perymenium berlandieri* DC collected in Morelos State, México (voucher specimen deposited at the National Herbarium MEXU 597604), were extracted with Me_2CO . After solvent evapn 19.25 g of extract were obtained. This extract was dissolved in $\text{MeOH}-\text{H}_2\text{O}$ (4:1) and extracted with hexane. The remaining MeOH soln was evapd and H_2O (50 ml) added. The resulting aq soln was extracted with EtOAc . After solvent evapn, 6.3 and 8.25 g of residues were obtained from the hexane and EtOAc frs, respectively. The EtOAc fr. was subjected to CC (silica gel, Hexane- EtOAc gradient elution). Frs eluted with hexane- EtOAc (7:3) contained **1**, which was purified by CC (silica gel hexane- Me_2CO , 17:3) and percolation through activated charcoal. Compound **1** (714.5 mg) was obtained as a liquid. $[\alpha]_D + 75.86$ (CHCl_3 ; *c* 0.261); IR $\nu_{\text{max}}^{\text{film}}$ cm^{-1} : 3475, 1762, 1739, 1662, 1375, 1235, 1144, 1029, 966, 756; MS 70 eV m/z (rel. int.): 306 [M^+]⁺ ($\text{C}_{17}\text{H}_{22}\text{O}_5$) not observed. 289 (2), 264 (1), 246 (6), 228 (9), 91 (40), 43 (100). Compound **3** (802.3 mg) was isolated from frs. eluted with hexane- EtOAc (4:1) and purified by crystallization from EtOAc -hexane. Crystals, mp 85–87°; IR $\nu_{\text{max}}^{\text{CHCl}_3}$ cm^{-1} : 3503, 1757, 1742, 1652, 1445, 1374, 1144, 1026, 963; MS 70 eV m/z (rel. int.): 306 [M^+]⁺ ($\text{C}_{17}\text{H}_{22}\text{O}_5$) (< 1), 246 (2), 228 (4), 91 (22), 55 (34), 43 (100).

Acetylation of compound **1**. A soln of **1** (46.2 mg) in pyridine (0.5 ml) and Ac_2O (0.5 ml) was left to stand at

room temp. for 3 hr, then poured into ice. After the usual work-up and crystallization from EtOAc -hexane, 22.4 mg of **2** were obtained as crystals which at 155–158° softened but did not melt and above 200° decomposed. $[\alpha]_D + 71.8$ (CHCl_3 ; *c* 0.212); IR $\nu_{\text{max}}^{\text{CHCl}_3}$ cm^{-1} : 1766, 1732, 1664, 1372, 1139, 1023, 971; MS 70 eV m/z (rel. int.): 348 [M^+]⁺ ($\text{C}_{19}\text{H}_{24}\text{O}_6$) not observed, 289 (23), 247 (10), 229 (21), 201 (12), 91 (27), 43 (100).

Oxidation of compound 3. Jones reagent was added dropwise to a stirred soln of **3** (62.3 mg) in Me_2CO (5 ml) at 0°. Compound **4** (17.2 mg) was obtained after the usual work-up and CC (silica gel, hexane- EtOAc) as a liquid; MS 70 eV m/z (rel. int.): 304 [M^+]⁺ ($\text{C}_{17}\text{H}_{20}\text{O}_5$) unobserved, 276 (3), 91 (43), 69 (48), 43 (100).

Acetylation of compound 3. A soln of 214.3 mg of **3** (partially decomposed) in pyridine (2 ml) and Ac_2O (2 ml) was left to stand at room temp. for 90 min and then poured into ice. The reaction mixture was worked-up as usual. TLC revealed the presence of two major components, which were purified by CC (silica gel, hexane- EtOAc 7:3). The more polar **5**, was a liquid (46.1 mg); IR $\nu_{\text{max}}^{\text{CHCl}_3}$ cm^{-1} : 1765, 1740, 1657, 1450, 1373, 1142, 1045, 960; MS 70 eV m/z (rel. int.): 348 [M^+]⁺ ($\text{C}_{19}\text{H}_{24}\text{O}_6$) not observed, 306 (< 1), 289 (< 1), 246 (1), 228 (4), 91 (16), 79 (11), 43 (100). Compound **6** (37.6 mg) was also obtained; IR $\nu_{\text{max}}^{\text{CHCl}_3}$ cm^{-1} : 1766, 1737, 1642, 1450, 1369, 1143, 1023, 960, 910; MS 70 eV m/z (rel. int.): 348 [M^+]⁺ ($\text{C}_{19}\text{H}_{24}\text{O}_6$) unobserved, 306 (< 1), 228 (16), 91 (13), 79 (9), 43 (100).

Acknowledgements—We are very grateful to Messrs R. Gaviño, R. Patiño, J. Pérez, L. Velasco and H. Ramírez for technical assistance. We also thank to Biol. Oswaldo Téllez, Botany Department, Instituto de Biología, UNAM, for identification of the plant material.

REFERENCES

- Bohlmann, F. and Zdero, C. (1972) *Phytochemistry* **16**, 786.
- Maldonado, E., Mayorga, L. and Ortega, A. (1987) *Phytochemistry* **26**, 205.
- Bohlmann, F., Jakupovic, J. and Schuster, A. (1985) *Phytochemistry* **24**, 495.
- Bohlmann, F., Zdero, C., King, R. M. and Robinson, H. (1984) *Phytochemistry* **23**, 1185.
- Maldonado, E., Vaughan, J. and Ortega, A. (1984) *Phytochemistry* **24**, 813.
- González, A. G., Bermejo, J., Toledo, F. and Daza, L. R. (1981) *Phytochemistry* **20**, 1895.
- Zdero, C. and Bohlmann, F. (1990) *Phytochemistry* **29**, 183.
- Picher, M. T., Seoane, E. and Tortajada, A. (1984) *Phytochemistry* **23**, 1995.
- Fujimoto, Y., Kinoshita, T., Ikekawa, N. and Munagurilire, J. (1987) *Phytochemistry* **26**, 2593.
- Bohlmann, F. and Zdero, C. (1983) *Phytochemistry* **21**, 2543.
- Bohlmann, F. and Gupta, K. (1981) *Phytochemistry* **20**, 2773.
- Watson, W. H. and Kashyap, R. P. (1986) *J. Org. Chem.* **51**, 2521.