

A FLAVONE FROM LEAVES OF *ARRABIDAEA CHICA* f. *CUPREA*

ORLANDO S. TAKEMURA, MUNEKAZU IINUMA,* HIDEKI TOSA,* OBDÚLIO G. MIGUEL,† EDUARDO A. MOREIRA† and YOSHINORI NOZAWA†

Department of Biochemistry, Gifu University School of Medicine, Tsukasamachi 40, Gifu 500, Japan; *Department of Pharmacognosy, Gifu Pharmaceutical University, 6-1 Mitahora-higashi 5 chome, Gifu 502, Japan; †Department of Pharmacy, Universidade Federal do Paraná, R. Coronel Dulcídio 638, Cep 80.240-170, Curitiba, Paraná, Brazil

(Received in revised form 6 September 1994)

Key Word Index—*Arrabidaea chica* f. *cuprea*; Bignoniaceae; Carajurú; 5-methoxylated flavone; carajuflavone.

Abstract—A new flavone, 6,7,3',4'-tetrahydroxy-5-methoxyflavone, named carajuflavone, was isolated from the leaves of the Brazilian plant *Arrabidaea chica* f. *cuprea*. The structure was established by spectroscopic analysis.

INTRODUCTION

The family Bignoniaceae comprises about 120 genera and 650 species that are distributed mainly in tropical America and Africa [1, 2]. The genus *Arrabidaea* occurs in tropical America, from south of Mexico to central Brazil. Although *A. chica* f. *cuprea* has a limited occurrence in the south of Brazil, Paraguay and northeast of Argentina, *A. chica* is very common in the Amazon region and has been widely used as an anti-inflammatory and astringent agent as well as a remedy for intestinal colic, sanguine diarrhoea, leucorrhoea, anaemia and leukaemia [3]. In the past, the chemical constituents of the leaves, which supply a precious red dye, were studied by Chapman *et al.* who identified the 3-desoxyanthocyanidin named carajurin [4]. Later, Harborne [5] and Scogin [1] proposed that the occurrence of this rare pigment in Bignoniaceae is probably restricted to the species *A. chica*. In a previous study of the leaves of *A. chica* (H&B) Verlot f. *cuprea* (Cham.) Sandw. locally called 'carajurú', the presence of anthocyanins, flavonoids, tannins and phytosterols in addition to 7,4'-dihydroxy-5-methoxyflavone (thevetiaflavone) [6] has been reported. In the present paper, the isolation and structural determination of a new flavone from the leaves is described.

RESULTS AND DISCUSSION

An ethyl acetate-soluble layer of 95% methanol extract of the leaves of *Arrabidaea chica* f. *cuprea* was subjected to column chromatography on silica gel, polyamide and polyclar, successively, to yield **1** and **2**. Compound **1**, obtained as a pale yellow amorphous powder, showed $[M]^+$ at *m/z* 316.0594 in the high resolution EI-mass spectrum, which corresponds to the molecular formula

$C_{16}H_{12}O_7$ (calcd 316.0583). The UV absorption bands at 275 and 336 nm revealed that **1** was a flavone, and the bathochromic shifts observed by addition of shift reagents such as $AlCl_3/HCl$ and $NaOAc/H_3BO_3$ indicated that **1** had free hydroxyl groups at C-7, and C-6 or C-8 on the A ring and an *ortho*-dihydroxyl group on the B ring in a flavone skeleton [7]. The 1H NMR spectrum showed the presence of four hydroxyls [δ 8.28, 8.37, 8.63 and 8.92 (1H each, *br s*)] and a methoxyl group [δ 3.88 (3H, *s*)]. Among them, two hydroxyls and the methoxyl group were located on the A ring, and the remaining two hydroxyl groups were on the B ring, which was also supported by the EI-mass spectrum fragment ions caused by retro-Diels-Alder (RDA) cleavage (*m/z* 181 derived from the A ring and *m/z* 134 from the B ring). The 1H NMR spectrum further exhibited three protons in a ABX system [δ 6.98 (1H, *d*, *J* = 8 Hz), 7.41 (1H, *dd*, *J* = 8, 2 Hz) and 7.46 (1H, *d*, *J* = 2 Hz)] and two one-proton singlets [δ 6.45 and 6.88]. The above data suggested the partial structure of the B ring moiety is a 3',4'-dihydroxyl substituent, which was confirmed by the HMBC experiment (Fig. 1). On the other hand, the methoxyl group appeared in a lower field at δ 62.3 in the ^{13}C NMR spectrum, indicating that both *ortho*-positions of the methoxyl group were occupied by substituents. The aromatic carbons bearing *O*-function were observed at δ 137.3, 145.9, 152.2 and 152.7 in the ^{13}C NMR spectrum, indicating the A ring moiety to be a 1,3,4,5-tetraoxogenated benzene. As no chelated hydroxyl group was observed in the 1H NMR and the UV spectrum, the structure of **1** was either 6,7,3',4'-tetrahydroxy-5-methoxy- or 7,8,3',4'-tetrahydroxy-5-methoxyflavone. In the HMBC spectrum, the methoxyl group (δ 3.88) was correlated to the aromatic carbon at δ 145.9 assigned to C-5. The aromatic proton (δ 6.88) assignable to H-8 was correlated to three aromatic carbons with *O*-function (δ 137.3, 152.2 and 152.7) in addition to a quaternary

*Author to whom correspondence should be addressed.

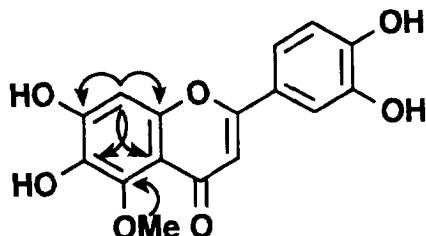


Fig. 1. HMBC spectrum of 1 (correlations observed in the B and C rings were omitted).

aromatic carbon (δ 112.6, C-10) through 2J and 3J . Therefore the methoxyl group was located at the *para*-position (C-5) to the aromatic proton (δ 6.88). The structure of carajuflavone was, then, concluded to be 6,7,3',4'-tetrahydroxy-5-methoxyflavone (1).

In addition to 1, luteolin (2) was isolated and the structure was elucidated by means of spectral analysis. Biological assays, using the isolated compounds, revealed that 1 had a weak activity on the inhibition of enzyme release and superoxide production by rabbit neutrophils stimulated by formyl-methionyl-leucyl-phenylalanine (FMLP), and 2 showed strong inhibitory effects on these responses of neutrophils (Takemura *et al.*, unpublished data).

EXPERIMENTAL

Plant material. Leaves of *Arrabidaea chica* f. *cuprea* were collected at Alto da Glória district, Curitiba City, Paraná, Brazil in April 1989. The specimen was identified by Dr Gerdt Hatschbach, Botanical Garden of Curitiba City. A voucher specimen is deposited in the Herbarium of Department of Botany, Setor de Ciências Biológicas, Universidade Federal do Paraná, Curitiba City, under registration number n° 20.549.

Extraction and isolation. Dried leaves (2.0 kg) were exhaustively extracted with 95% MeOH. The concd extract was partitioned with petrol, toluene, CHCl_3 , and EtOAc , successively. Upon concentration, the EtOAc layer (17.8 g) was subjected to CC on silica gel using CHCl_3 , EtOAc and MeOH as eluent. The EtOAc elution (7.29 g) was rechromatographed on silica gel using CHCl_3 –MeOH– HCO_2H (40:10:1). The initial frs I and II were further transferred to another chromatograph on polyamide 200 eluted with CH_2Cl_2 –MeOH– H_2O

(40:10:1). Fr. I was finally submitted to chromatography on polyclar eluted with CHCl_3 –EtOH–MeCOEt– Me_2CO (40:20:5:1) to give 2 (18 mg). The fr. II was also subjected to chromatography over polyclar eluted with CHCl_3 –MeOH–MeCOEt– Me_2CO (20:10:5:1) with gradual increase in MeOH in CHCl_3 to give 1 (26 mg).

Compound 1, carajuflavone, 6,7,3',4'-tetrahydroxy-5-methoxyflavone. A pale yellow amorphous powder [MeOH]. HR-EIMS m/z 316.0594 (calcd 316.0583 for $\text{C}_{16}\text{H}_{12}\text{O}_7$). EIMS m/z (rel. int.): 316 (M^+ , 91), 301 (26), 298 (100), 273 (23), 270 (10), 242 (10), 181 (5), 167 (6), 153 (14), 139 (7), 137 (13), 135 (10), 134 (26), 69 (27), 44 (21). UV λ_{max} (nm, MeOH): 275, 336; + NaOH: 265sh, 296, 403; + AlCl_3 : 260sh, 315, 370sh, 473; + AlCl_3 /HCl: 275, 338, 413; + NaOAc: 270, 318sh, 364; + NaOAc/ H_3BO_3 : 252sh, 283, 356. ^1H NMR (400 MHz, acetone- d_6) δ : 3.88 (3H, s, OMe), 6.45 (1H, s, H-3), 6.88 (1H, s, H-8), 6.98 (1H, d, J = 8 Hz, H-5'), 7.41 (1H, dd, J = 8, 2 Hz, H-6'), 7.46 (1H, d, J = 2 Hz, H-2'), 8.28, 8.37, 8.63 and 8.92 (1H each, br s, OH \times 4). ^{13}C NMR (100 MHz, acetone- d_6): δ 62.3 (MeO), 100.3 (C-8), 106.6 (C-3), 112.6 (C-10), 113.9 (C-2'), 116.6 (C-5'), 119.5 (C-6'), 124.5 (C-1'), 137.3 (C-6), 145.9 (C-5), 146.4 (C-3'), 149.4 (C-4'), 152.2 (C-7*), 152.7 (C-9*), 162.1 (C-2), 176.9 (C-4), (*: interchangeable). All carbons were assigned with the aid of HMBC spectrum.

Acknowledgements—The authors are grateful to Mr Ronaldo Kummrow and Dr Gerdt Hatschbach, of Botanical Garden of Curitiba City, for their assistance in collecting and identification of the specimen.

REFERENCES

1. Scogin, R. (1980) *Biochem. Syst. Ecol.* **8**, 273.
2. Barroso, G. M. (1986) in *Sistemática de angiospermas do Brasil*, Vol. 3. Viçosa, Brazil.
3. Castro da Costa, P. R. and Araújo Lima, E. (1989) *Brazilian-Sino Symposium on Chemistry and Pharmacology of Natural Products*. Rio de Janeiro, Brazil.
4. Chapman, E., Perkin, A. G. and Robinson, R. (1927) *J. Chem. Soc.* 3015.
5. Harborne, J. B. (1966) *Phytochemistry* **6**, 1643.
6. Takemura, O. S. (1993) M.Sc. Thesis. Departamento de Botânica, S.C.B., Universidade Federal do Paraná, Curitiba, Brazil.
7. Mabry, T. J., Markham, K. R. and Thomas, M. B. (1970) *The Systematic Identification of Flavonoids*. Springer, Berlin.