

A REINVESTIGATION OF THE BIOSYNTHESIS OF LANOSTEROL IN *EUPHORBIA LATHYRIS*

JOSÉ-LUIS GINER*† and CARL DJERASSI

Department of Chemistry, Stanford University, Stanford, CA 94305-5080, U.S.A.

(Received in revised form 28 November 1994)

Key Word Index—*Euphorbia lathyris*; Euphorbiaceae; biosynthesis; steroids; oxidosqualene cyclase; lanosterol.

Abstract—The latex of *Euphorbia lathyris* was shown to be capable of producing lanosterol, as well as cycloartenol, butyrospermol and hopenol B, via the enzymatic cyclization of 2,3-oxidosqualene. The conversion of cycloartenol to lanosterol could not be demonstrated using the same latex. The triterpene composition of the latex of *Euphorbia lathyris* is reported.

INTRODUCTION

The biosynthesis of sterols in plants diverges from that in animals at the stage of squalene oxide (1) cyclization [1, 2]. While lanosterol (2) is the product of the oxidosqualene cyclase in animals, the plant cyclase produces cycloartenol (3) (Scheme 1). This difference requires an extra step in the biosynthetic pathway to phytosterols, namely the opening of the cyclopropyl ring of cycloartenol (3).

During our investigation of the biosynthesis of marine sterols [3, 4], it was found that sponges were able to utilize both lanosterol and cycloartenol as sterol precursors [5]. While this was surprising, other nonphotosynthetic organisms have been shown to utilize the cycloartenol pathway of plants [6]. However, further investigation using sponge cell-free extracts showed not only that sponges produce lanosterol (2) from the cyclization of squalene oxide (1), but also that sponges are capable of opening the cyclopropyl ring of cycloartenol (3) to give lanosterol (2) [7]. Dinoflagellates also possess this ability [7]. This ability is not found in animals, but it also differs from the situation in plants and algae, since in these organisms, removal of the 4 β -methyl group of cycloartenol is required before cyclopropyl ring-opening can take place [8].

Only one other example of the direct conversion of cycloartenol (3) to lanosterol (2) has been reported—in the *Euphorbia* species, *E. lathyris* [9]. This plant, in common with other *Euphorbia*, contains in its latex a

complex mixture of triterpenes, the study of which has been used in the taxonomic classification of the Euphorbiaceae [10]. Lanosterol (2), which is typically found in animals, is found among the triterpenes of some *Euphorbia* where its presence represents a scientific oddity. We report here our reinvestigation of the biosynthesis of lanosterol (2) in *E. lathyris*.

RESULTS AND DISCUSSION

An analysis of the triterpenes of *E. lathyris* latex using HPLC separation and ^1H NMR spectroscopic analysis was carried out (Table 1). The triterpenes were largely those previously identified by GC-mass spectrometry analysis [11], with the exception of euphol, which we did not detect. Lanosterol (2) was found, and the product of its biomethylation, 24-methylenelanosterol, was detected [12]. Hopenol B, which had not yet been identified in this species of *Euphorbia*, was also isolated [13].

Upon assaying the oxidosqualene cyclase activity of the latex with ^3H -labelled squalene oxide (1), all the triterpenes, including lanosterol (2), were labelled (Table 1) with the exception of those requiring subsequent SAM-dependent methylation. In order to determine whether cycloartenol (3) represented a precursor to lanosterol (2) in this plant, the latex was incubated with ^3H -labelled cycloartenol (3). No radioactivity other than starting material was detected in any HPLC fraction.

These results clearly demonstrate that lanosterol (2) is formed directly from squalene oxide (1) in *E. lathyris* latex. In contrast to an early study in plant triterpene biosynthesis [9], we were unable to detect the isomerization of cycloartenol (3) to lanosterol (2). Because the cyclopropyl ring-opening in plants and algae has since been shown to require removal of the 4 β -methyl group [8], we believe the direct isomerization of cycloartenol (3)

*Author to whom correspondence should be addressed.

†Present address: Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, U.S.A.

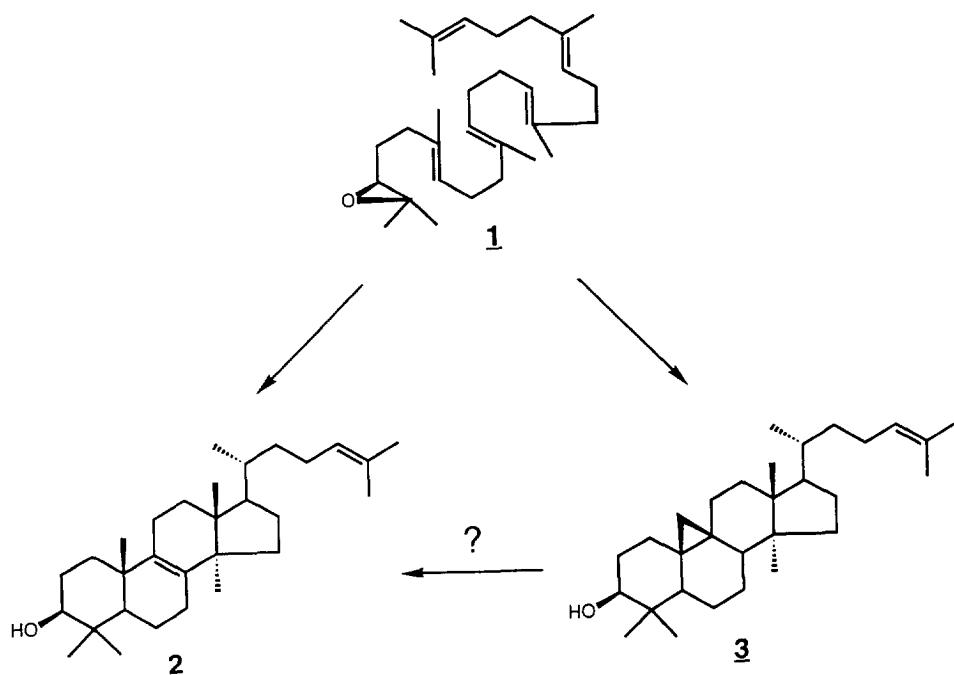


Table 1.

Triterpene	<i>E. lathyris</i> latex composition (%)	Products of ^3H -oxido-squalene cyclization (%)*
Lanosterol (2)	16	7
Butyrospermol	23	65
24-Methylenelanosterol	3	—
Cycloartenol (3)	10	19
24-Methylenecycloartenol	40	—
Hopenol B	8	9

*Total radiochemical yield = 0.2%.

to lanosterol (2) to be limited to sponges and dinoflagellates [7].

It is of interest that cyclization to lanosterol (2) results from the same chair-boat-chair-chair folding of squalene oxide (1) as does cycloartenol (3) [14]. In addition, a derivative of butyrospermol has been produced by a cyclase that uses the chair-chair-chair-chair conformation found in hopenol biosynthesis [15]. While it is presently unknown if the different latex triterpenes are produced by different cyclases, the mechanistic similarity of their biosyntheses suggests cyclase nonspecificity [16] as a possible cause for some of the triterpene diversity found in *Euphorbia*.

EXPERIMENTAL

Radiolabelled substrates. $[24-^3\text{H}]$ -Labelled cycloartenol (3) ($150 \text{ mCi mmol}^{-1}$) and $[3-^3\text{H}]$ -labelled squalene oxide (1) ($200 \text{ mCi mmol}^{-1}$) were prep'd as previously described [17]. To solubilize the substrate, Tween 80

(2 mg) was mixed in CHCl_3 with substrate ($20 \mu\text{Ci}$ [$24-^3\text{H}$]-cycloartenol or $200 \mu\text{Ci}$ [$3-^3\text{H}$]-squalene oxide). After evaporating the solvent, the mixt. was dissolved in 0.2 ml H_2O .

HPLC. A Waters Associates HPLC system (M 6000 pump, R403 differential refractometer) was used equipped with 2 Altex Ultrasphere ODS 5- μm columns (10 mm i.d. \times 24 cm) in series.

Triterpene analysis. The triterpenes of an EtOAc extract of 0.5 ml latex were first isolated by silica gel TLC (hexane-Et₂O, 1:1) and then purified by reversed phase HPLC. The retention times (MeOH , 4 ml min^{-1}) were: lanosterol (2) 42 min; butyrospermol 43 min; 24-methylenelanosterol 45 min; cycloartenol (3) 46.5 min; 24-methylenecycloartenol 49 min; hopenol B 56 min. Lanosterol (2) and butyrospermol were further sep'd using MeCN-MeOH-EtOAc (3:1:1, 4 ml min^{-1}): lanosterol (2) 33 min; butyrospermol 32 min. The triterpenes were identified from their ^1H NMR (400 MHz) spectra by comparison with authentic samples and published values [18].

Oxidosqualene cyclase assay. Freshly collected latex (0.6 ml) from young *E. lathyris* plants (30–40 cm) obtained from a commercial greenhouse was mixed on ice with 1 ml of a 100 mM Na HEPES (*N*-2-hydroxyethyl-piperazine-*N'*-2-ethanesulphonic acid hemisodium salt) buffer (pH 7.5), 2 mM in MgSO₄, 1 mM in DTT (Dithiothreitol), to which 170 µg PMSF (phenylmethylsulphonyl fluoride) was added in 5 µl EtOH. Oxidosqualene cyclase activity could be improved by concentrating the latex membranes by centrifugation. Thus the white gummy pellet after centrifugation (350 000 *g*, 30 min) was resuspended, on ice, with a glass-Teflon homogenizer in 100 µl of the same buffer. This latex membrane preparation (20 µl) was incubated with the [3-³H]-squalene oxide (1)-Tween 80 suspension (10 µl, 10 µCi) at 27° for 4 hr. The mixture was extracted with 1 ml EtOAc, unlabelled triterpenes were added, the products purified by TLC (hexane-Et₂O, 1:1), and analysed by HPLC and liquid scintillation counting.

Cycloartenol (3)-lanosterol (2) isomerization assay. A modification of the above procedure was used with the substitution of [24-³H]-labelled cycloartenol (3)-Tween 80 suspension (5 µl, 0.5 µCi) for [3-³H]-squalene oxide (1). Only the cycloartenol fraction contained radioactivity. No radioactivity was detected in the lanosterol (2) fr. within the limits of detection (200 dpm).

Acknowledgements—Financial support was provided by NIH Grant No. GM-06840. We thank Prof. Robert Simoni (Dept of Biological Sciences, Stanford) for use of his scintillation counter; Dr Laurent Wünsche for preparing the 3-tritio-2,3-oxidosqualene; Dr Christopher J. Silva for preparing the 24-tritio-cycloartenol; and Prof. John Thomas (Dept of Biological Sciences, Stanford University) for help in obtaining and identifying *Euphorbia lathyris*.

REFERENCES

1. Goad, L. J. and Goodwin, T. W. (1972) *Progr. Phytochem.* **3**, 113.
2. Benveniste, P. (1986) *Ann. Rev. Plant Physiol.* **37**, 275.
3. Giner, J.-L. (1993) *Chem. Revs.* **93**, 1735.
4. Djerassi, C. and Silva, C. J. (1991) *Acc. Chem. Res.* **24**, 371.
5. Kerr, R. G., Stoilov, I. L., Thompson, J. E. and Djerassi, C. (1989) *Tetrahedron* **45**, 1893.
6. Raederstorff, D. and Rohmer, M. (1985) *Biochem. J.* **231**, 609.
7. Giner, J.-L. and Djerassi, C. (in prep.).
8. Cattel, L., Delprino, L., Benveniste, P. and Rahier, A. (1979) *J. Am. Oil Chem. Soc.* **56**, 6.
9. Ponsinet, G. and Ourisson, G. (1968) *Phytochemistry* **7**, 757.
10. Ponsinet, G. and Ourisson, G. (1968) *Phytochemistry* **7**, 89.
11. Nielsen, P. E., Nishimura, H., Liang, Y. and Calvin, M. (1979) *Phytochemistry* **18**, 103.
12. Skrukrud, C. L., Taylor, S. E., Hawkins, D. R. and Calvin, M. (1987) in *Metabolism, Structure and Function of Plant Lipids* (Stumpf, P. K., Mudd, J. B. and Nes, W. D., eds), p. 115. Plenum Press, New York.
13. Matsunaga, S. and Morita, R. (1983) *Phytochemistry* **22**, 605.
14. Corey, E. J. and Virgil, S. C. (1991) *J. Am. Chem. Soc.* **113**, 4025.
15. Abe, I. and Rohmer, M. (1994) *J. Chem. Soc. Perkins, Trans. 1* 783.
16. Wagschal, K., Savage, T. J. and Croteau, R. (1991) *Tetrahedron* **47**, 5933.
17. Silva, C. J., Wünsche, L. and Djerassi, C. (1991) *Comp. Biochem. Physiol.* **99B**, 763.
18. Dev, S. (ed.) (1989) *CRC Handbook of Terpenoids, Triterpenes Vol. 1*. CRC Press, Boca Raton.