



## BIOTRANSFORMATION OF ( - )-NOPOL BY *GLOMERELLA CINGULATA*

MITSUO MIYAZAWA, YASUHIRO SUZUKI and HIROMU KAMEOKA

Department of Applied Chemistry, Faculty of Science and Engineering, Kinki University, Kowakae, Higashiosaka-shi, Osaka 577, Japan

(Received in revised form 14 September 1994)

**Key Word Index**—*Glomerella cingulata*; biotransformation; ( - )-nopol; (4R)-( - )-4-hydroxynopol; 4-oxonopol; 5-hydroxynopol.

**Abstract**—The biotransformation of ( - )-nopol to (4R)-( - )-4-hydroxynopol, 4-oxonopol and 5-hydroxynopol by *Glomerella cingulata* has been demonstrated. The structures of the biotransformation products were determined by spectral methods.

### INTRODUCTION

As part of a programme concerned with the use of specific microorganisms for the production of fine chemicals, we have been studying the biotransformation of terpenoids by the plant pathogenic microorganisms, *Glomerella cingulata*, *Rhizoctonia solani* and *Botrytis allii*. In our previous publications we reported that, ( + )-cedrol [1], ( - )- $\alpha$ -bisabolol [2], 1,8-cineole [3], ( - )-globulol [4] and ( + )-ledol [4] are transformed to novel terpenes by *G. cingulata*. ( - )-Nopol (1) has been isolated from the essential oil of carrot root [5], and is easily synthesized from  $\beta$ -pinene [6]. This paper deals with the microbial oxidation of ( - )-nopol (1) to (4R)-( - )-4-hydroxynopol (2), 4-oxonopol (3) and 5-hydroxynopol (4) by *G. cingulata*. The results show that 1 is predominantly oxidized at the 4-position.

### RESULTS AND DISCUSSION

The time course of metabolite production following the addition of a small amount of ( - )-nopol (1) to a culture of *G. cingulata* was monitored by TLC and quantitatively measured by GC (Fig. 1). The results suggested that the metabolic route leading to compounds 2 and 3 was the major one by which compound 1 was metabolized by *G. cingulata* and that the route leading to compound 4 was of minor importance in quantitative terms. The major products, 2 and 3, each accounted for some 40% of the total monoterpenoid content of the cultures after 8 days whereas compound 4 accounted for only ca 5% after the same period of time. In order to isolate these metabolic products (2-4), 1 (3.60 g) was incubated with *G. cingulata* for 8 days. At the end of this time, the culture media and mycelia were extracted with  $\text{CH}_2\text{Cl}_2$  and the extract (3.92 g) worked up to give 2 (326 mg), 3 (349 mg) and 4 (88 mg).

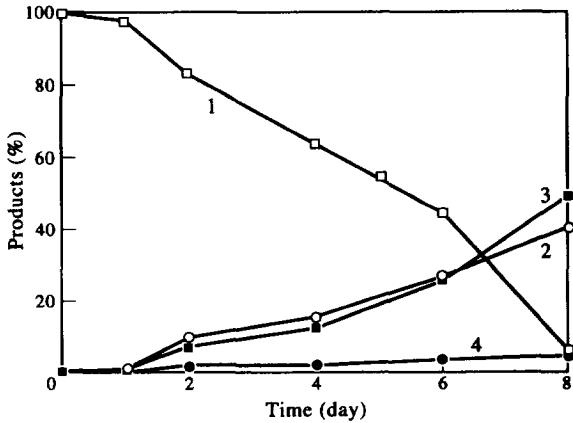
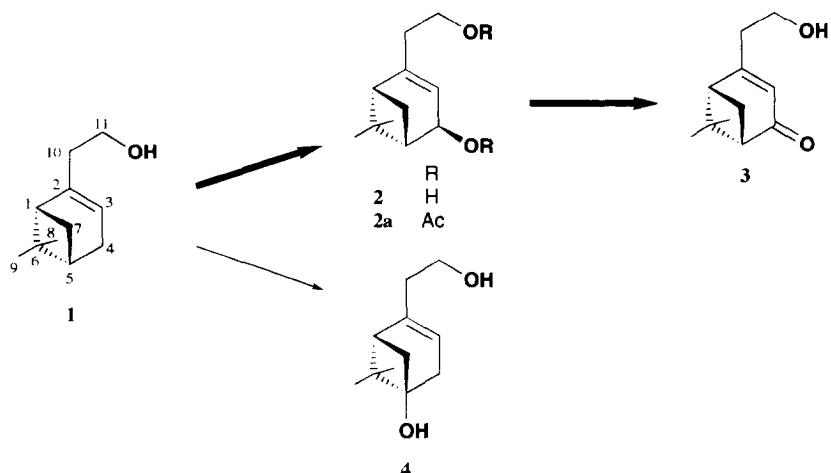




Fig. 1. Time course of metabolic products of ( - )-nopol (1) by *G. cingulata*. □: ( - )-nopol (1); ○: (4R)-( - )-4-hydroxynopol (2); ■: 4-oxonopol (3); ●: 5-hydroxynopol (4).

Compound 2 showed a specific ion peak at  $m/z$  164 [ $\text{M} - \text{H}_2\text{O}$ ] $^+$  in its GC-mass spectrum. The IR spectrum contained a C-O absorption band ( $1006\text{ cm}^{-1}$ ) due to the presence of a secondary alcohol group as well as the primary alcohol absorption band ( $1049\text{ cm}^{-1}$ ) of the parent compound. The  $^1\text{H}$  NMR spectral data contained the signals (overlapped) for two hydroxyl groups at  $\delta$  1.73 and a methine proton adjacent to the secondary hydroxyl group at  $\delta$  4.32. The  $^{13}\text{C}$  NMR spectral data showed the signals for a new methine carbon in place of the 4-methylene carbon present in 1. Furthermore, the signals for C-3 and C-5 of 2 were shifted to lower field from those of 1. These spectral data indicated that the new hydroxyl group was located at C-4. The structure of 2 was confirmed by the assignment of the NMR spectral data of its 4, 11-diacetate (2a). The absolute configuration at C-4 was established by comparison of the NMR spectral data with those of the known related compounds,



Scheme 1. The metabolism of (*–*)-nopol (**1**) by *G. cingulata*.

(*–*)-*cis*-verbenol and (*–*)-*trans*-verbenol [7, 8]. The <sup>1</sup>H NMR data showed that the signals for the proton at C-4 of **2**, (*–*)-*cis*-verbenol and (*–*)-*trans*-verbenol were at  $\delta$  4.32, 4.45 and 4.25, and the signals for the proton at C-8 were at  $\delta$  0.88, 1.07 and 0.87, respectively. The <sup>13</sup>C NMR data showed that the signals for C-4 of **2**, (*–*)-*cis*-verbenol and (*–*)-*trans*-verbenol were at  $\delta$  70.2, 73.3 and 70.3, and those for C-6 were at  $\delta$  46.3, 39.0 and 46.1, respectively. Consideration of the above data suggested that the chemical shifts of **2** were very similar to those of (*–*)-*trans*-verbenol. In addition, the other signals for C-2, C-5, C-7, C-8 and C-9 of **2** were almost identical with those of (*–*)-*trans*-verbenol. These results allowed us to determine the absolute configuration of C-4 as *R*. The optical rotation of **2** had a large laevorotatory value (*–*121.4°). Therefore, compound **2** was determined to be (*4R*)-(*–*)-4-hydroxynopol.

The metabolic product **3** contained specific ion peaks at *m/z* 180 [M]<sup>+</sup>, 165 [M – Me]<sup>+</sup> and 149 [M – CH<sub>2</sub>OH]<sup>+</sup> in the GC-mass spectrum. The IR spectrum showed a strong absorption band at 1665 cm<sup>–1</sup> (C=O) due to the presence of a carbonyl group. The <sup>13</sup>C NMR spectral data also indicated the presence of a newly introduced carbonyl group in place of the 4-methylene group of **1**. In addition, the signals for H-3, H-5 and H-7 in the <sup>1</sup>H NMR spectrum and those for C-2, C-3, C-5, C-6, and C-7 in the <sup>13</sup>C NMR spectrum were shifted to lower field than the corresponding signals of **1**. These spectral data established that compound **3** was 4-oxonopol.

The mass spectral data of the minor metabolic product **4** showed specific ion peaks at *m/z* 182 [M]<sup>+</sup>, 167 [M – Me]<sup>+</sup> and 137 [M – CH<sub>2</sub>CH<sub>2</sub>OH]<sup>+</sup>. The IR spectrum of **4** contained the novel absorption at 1134 cm<sup>–1</sup> (C–O) due to the presence of a tertiary hydroxy group. The <sup>1</sup>H NMR spectral data contained the signals (overlapped) for two hydroxyl groups at  $\delta$  1.68, however, there were no signals for a proton adjacent to a newly introduced hydroxy group. This indicated the

presence of a tertiary alcohol group in **4**. The <sup>13</sup>C NMR data showed the presence of a quaternary carbon instead of the 4-methine C present in **1**. In addition, movement of the chemical shifts between **1** and **4** was observed for the 4-position but not the 2-position. Therefore, compound **4** was shown to be 5-hydroxynopol.

This study established that compound (*–*)-**1** is oxidatively biotransformed to compounds **2–4** by the fungus *G. cingulata* (Scheme 1). The oxidations were confined mainly to the 4-position to give (*4R*)-(*–*)-4-hydroxy- and 4-oxo-nopol. This enantioselective hydroxylation might be due to steric hindrance by the geminal dimethyl group at C-6 dictating that the hydroxyl group is incorporated from the opposite side of the molecule to the dimethyl group.

## EXPERIMENTAL

*General.* (*–*)-Nopol was purchased from Fluka Chem. <sup>1</sup>H and <sup>13</sup>C NMR: 270.05 and 67.80 MHz, respectively. GC-MS: 20 eV (ion voltage), 250° (ion source), OV-1 (0.25 mm × 30 m) capillary column; TLC: silica gel 60 F<sub>254</sub> pre-coated (layer thickness 0.25 mm, Merck); CC: silica gel with *n*-hexane–EtOAc gradients.

*Cultivation of G. cingulata.* Spores of *G. cingulata* (provided by Dr M. Hyakumachi, Gifu University) which had been preserved at low temp. were inoculated into sterilized culture media in an Erlenmeyer flask and shaken at 27° for 2 days. The components of the culture medium (g/250 ml) were: sucrose 3.75, glucose 3.75, polypeptone 1.25, MgSO<sub>4</sub> · 7H<sub>2</sub>O 0.125, KCl 0.125, K<sub>2</sub>HPO<sub>4</sub> 0.25, FeSO<sub>4</sub> · 7H<sub>2</sub>O 0.0025. The mycelia were then transplanted in to petri dishes which contained 15 ml of the same sterilized culture media (pH 7.2) and incubated at 27° without shaking for 3 days. After growth of *G. cingulata*, **1** (3.60 g) was added directly to the medium (15 mg/15 ml) and the cultures further incubated under the same conditions for 8 days.

Table 1.  $^1\text{H}$  NMR spectral data for (-)-nopol (1) and its metabolic products (2-4) and derivative 2a (270.05 MHz,  $\text{CDCl}_3$ , TMS as int. standard)

| H              | 1                               | 2                                    | 2a                                   | 3                               | 4                               |
|----------------|---------------------------------|--------------------------------------|--------------------------------------|---------------------------------|---------------------------------|
| 1              | 2.04 <i>ddd</i> (1.5, 5.8, 5.8) | 2.12 <i>ddd</i> (1.5, 5.3, 5.5)      | 2.15 <i>ddd</i> (1.2, 5.3, 5.5)      | 2.52 <i>ddd</i> (1.3, 5.8, 5.8) | 2.00 <i>dd</i> (2.0, 6.3)       |
| 3              | 5.34 <i>m</i>                   | 5.46 <i>m</i>                        | 5.42 <i>m</i>                        | 5.80 <i>dd</i> (1.3, 1.5)       | 5.48 <i>m</i>                   |
| 4              | 2.24 <i>m</i>                   | 4.32 <i>dt</i> (2.8, 3.0)            | 5.37 <i>dd</i> (2.8, 3.0)            | —                               | 2.24-2.31 <i>m</i>              |
| 5              | 2.15 <i>m</i>                   | 2.20 <i>ddd</i> (1.5, 3.0, 5.5, 5.7) | 2.24 <i>ddd</i> (1.5, 3.0, 5.5, 5.5) | 2.68 <i>ddd</i> (1.5, 5.8, 5.8) | —                               |
| 7 <sub>a</sub> | 1.15 <i>d</i> (8.5)             | 1.32 <i>d</i> (7.8)                  | 1.45 <i>d</i> (8.5)                  | 2.10 <i>d</i> (9.5)             | 1.59 <i>d</i> (8.2)             |
| 7 <sub>b</sub> | 2.39 <i>ddd</i> (5.8, 5.8, 8.5) | 2.30 <i>ddd</i> (5.3, 5.7, 7.8)      | 2.33 <i>ddd</i> (5.3, 5.5, 8.5)      | 2.84 <i>ddd</i> (5.8, 5.8, 9.5) | 2.34 <i>ddd</i> (0.8, 6.3, 8.2) |
| 8              | 0.85 <i>s</i>                   | 0.88 <i>s</i>                        | 0.91 <i>s</i>                        | 1.02 <i>s</i>                   | 0.87 <i>s</i>                   |
| 9              | 1.28 <i>s</i>                   | 1.35 <i>s</i>                        | 1.35 <i>s</i>                        | 1.51 <i>s</i>                   | 1.23 <i>s</i>                   |
| 10             | 2.24 <i>dt</i> (1.0, 6.0)       | 2.28 <i>t</i> (6.5)                  | 2.37 <i>ddd</i> (1.0, 6.5, 7.0)      | 2.55 <i>t</i> (6.5)             | 2.26 <i>dt</i> (1.0, 6.5)       |
| 11             | 3.61 <i>dt</i> (1.0, 6.0)       | 3.67 <i>t</i> (6.5)                  | 4.08 <i>ddd</i> (6.5, 7.0, 11.5)     | 3.82 <i>t</i> (6.5)             | 3.64 <i>dt</i> (1.0, 6.5)       |
| 4-OH           | —                               | 1.73 <i>br s</i>                     | —                                    | —                               | —                               |
| 5-OH           | —                               | —                                    | —                                    | 1.68 <i>br s</i>                | 1.68 <i>br s</i>                |
| 11-OH          | —                               | 1.64 <i>br s</i>                     | —                                    | —                               | —                               |
| 4-COMe         | —                               | —                                    | 2.03 <sup>a</sup> <i>s</i>           | —                               | —                               |
| 11-COMe        | —                               | —                                    | 2.04 <sup>a</sup> <i>s</i>           | —                               | —                               |

Coupling constants in Hz.

<sup>a</sup>Values are interchangeable within each column.Table 2.  $^{13}\text{C}$  NMR spectral data for (-)-nopol (1) and its metabolic products (2-4) and derivative 2a (67.80 MHz,  $\text{CDCl}_3$ ,  $\text{CHCl}_3$ , as int. standard)

| C       | 1              | 2                          | 2a                          | 3                          | 4                          |
|---------|----------------|----------------------------|-----------------------------|----------------------------|----------------------------|
| 1       | 45.6 <i>d</i>  | 46.8 <i>d</i>              | 46.2 <sup>b</sup> <i>d</i>  | 48.7 <i>d</i>              | 40.8 <i>d</i>              |
| 2       | 144.7 <i>s</i> | 148.7 <i>s</i>             | 149.9 <i>s</i>              | 170.5 <i>s</i>             | 143.7 <i>s</i>             |
| 3       | 119.3 <i>d</i> | 121.1 <i>d</i>             | 117.4 <i>d</i>              | 121.5 <i>d</i>             | 121.8 <i>d</i>             |
| 4       | 31.3 <i>t</i>  | 70.2 <i>d</i>              | 73.3 <i>d</i>               | 204.2 <i>s</i>             | 38.0 <sup>f</sup> <i>t</i> |
| 5       | 40.7 <i>d</i>  | 47.1 <sup>a</sup> <i>d</i> | 44.4 <sup>b</sup> <i>d</i>  | 57.8 <i>d</i>              | 75.0 <i>s</i>              |
| 6       | 37.9 <i>s</i>  | 46.3 <i>s</i>              | 46.2 <i>s</i>               | 54.2 <i>s</i>              | 44.7 <i>s</i>              |
| 7       | 31.7 <i>t</i>  | 28.9 <i>t</i>              | 29.6 <i>t</i>               | 41.2 <sup>e</sup> <i>t</i> | 39.4 <sup>f</sup> <i>t</i> |
| 8       | 21.1 <i>q</i>  | 20.8 <i>q</i>              | 21.4 <i>q</i>               | 22.2 <i>q</i>              | 18.6 <i>q</i>              |
| 9       | 26.2 <i>q</i>  | 26.6 <i>q</i>              | 26.4 <i>q</i>               | 26.5 <i>q</i>              | 20.7 <i>q</i>              |
| 10      | 40.2 <i>t</i>  | 39.7 <i>t</i>              | 35.4 <i>t</i>               | 40.0 <sup>e</sup> <i>t</i> | 41.2 <sup>f</sup> <i>t</i> |
| 11      | 59.9 <i>t</i>  | 60.0 <i>t</i>              | 62.0 <i>t</i>               | 59.5 <i>t</i>              | 60.1 <i>t</i>              |
| 4-COMe  | —              | —                          | 20.9 <sup>e</sup> <i>q</i>  | —                          | —                          |
| 4-COMe  | —              | —                          | 170.9 <sup>d</sup> <i>s</i> | —                          | —                          |
| 11-COMe | —              | —                          | 20.8 <sup>e</sup> <i>q</i>  | —                          | —                          |
| 11-COMe | —              | —                          | 170.9 <sup>d</sup> <i>s</i> | —                          | —                          |

<sup>a-f</sup>Values are interchangeable within each column.

**Purification of the metabolic products (2-4).** After incubation, the culture media were collected, acidified to pH 2 with HCl, saturated with NaCl and extracted with  $\text{CH}_2\text{Cl}_2$  for 3 days. The mycelia were also collected and extracted with  $\text{CH}_2\text{Cl}_2$  for 3 days. Both  $\text{CH}_2\text{Cl}_2$  extracts were mixed, and the solvent evapd under red. press. The extract (3.92 g) was dissolved in  $\text{CH}_2\text{Cl}_2$  and separated into neutral and acid fractions in the usual manner. The neutral fraction (3.55 g) was chromatographed over silica gel with a hexane-EtOAc gradient repeatedly to give the metabolic products 2 (326 mg), 3 (349 mg) and 4 (88 mg).

**(4R)-(-)-Hydroxynopol (2).** Crystal; mp. 111.5-112.4 $^{\circ}$ ;  $[\alpha]_D^{20} - 121.4^{\circ}$  (MeOH; *c* 1.0); EIMS *m/z* (rel. int.): 164 [ $\text{M} - \text{H}_2\text{O}$ ]<sup>+</sup> (17), 149 (25), 133 (30), 131 (36), 119 (46), 104 (45), 91 (100), 69 (36), 59 (24), 43 (47), 40 (67); IR  $\nu_{\text{max}}$   $\text{cm}^{-1}$ : 3255, 2929, 1440, 1049, 1006, 929, 858, 766, 652;  $^1\text{H}$  and  $^{13}\text{C}$  NMR: Tables 1 and 2.

**(4R)-(-)-4,11-Diacetoxy-4-hydroxynopol (2a).** Compound 2 (30 mg) was acetylated in the usual manner to yield 2a (43 mg). Oil;  $[\alpha]_D^{20} - 125.9^{\circ}$  ( $\text{CHCl}_3$ ; *c* 1.0); EIMS *m/z* (rel. int.): 224 (0.8), 223 [ $\text{M} - \text{Ac}$ ]<sup>+</sup> (0.4), 181 (0.7), 180 (0.2), 163 (17), 147 (47), 131 (75), 121 (52), 105 (91), 91 (56), 43 (100); IR  $\nu_{\text{max}}$   $\text{cm}^{-1}$ : 2938, 1741, 1472, 1370, 1240, 1087, 1019, 972;  $^1\text{H}$  and  $^{13}\text{C}$  NMR: Tables 1 and 2.

**4-Oxonopol (3).** Oil;  $[\alpha]_D^{20} - 78.2^{\circ}$  ( $\text{CHCl}_3$ ; *c* 0.5); EIMS *m/z* (rel. int.): 180 [ $\text{M}$ ]<sup>+</sup> (42), 165 (58), 149 (33), 147 (50), 135 (48), 121 (65), 91 (71), 79 (80), 55 (82), 41 (100); IR  $\nu_{\text{max}}$   $\text{cm}^{-1}$ : 3411, 2950, 1665, 1610, 1042, 986, 865, 748;  $^1\text{H}$  and  $^{13}\text{C}$  NMR: Tables 1 and 2.

**5-Hydroxynopol (4).** Oil;  $[\alpha]_D^{20} - 45.0^{\circ}$  ( $\text{CHCl}_3$ ; *c* 0.30); EIMS *m/z* (rel. int.): 182 [ $\text{M}$ ]<sup>+</sup> (2), 167 (2), 164 (2), 149 (10), 137 (11), 126 (34), 121 (34), 95 (48), 91 (48), 79 (45), 43 (100), 41 (85); IR  $\nu_{\text{max}}$   $\text{cm}^{-1}$ : 3326, 2943, 1723, 1667, 1134, 1042, 755, 659;  $^1\text{H}$  and  $^{13}\text{C}$  NMR: Tables 1 and 2.

## REFERENCES

1. Miyazawa, M., Nankai, H. and Kameoka, H. (1993) *Chem. Express* **8**, 573. [*Chem. Abs.* (1993), **119**, 177384e].
2. Miyazawa, M., Nankai, H. and Kameoka, H. (1993) *Chem. Express* **8**, 401. [*Chem. Abs.* (1993), **119**, 137467c].
3. Miyazawa, M., Nakaoka, H. and Kameoka, H. (1991) *Chem. Express* **6**, 667. [*Chem. Abs.* (1993), **116**, 251829k].
4. Miyazawa, M., Uemura, T. and Kameoka, H. (1994) *Phytochemistry* **37**, 1027.
5. Alabran, D. M., Moskowitz, H. R. and Mabrouk, A. F. (1975) *J. Agric. Food Chem.* **23**, 229.
6. Bain, J. P., Best, A. H., Clark, C. K. and Hampton, B. L. (1946) *J. Am. Chem. Soc.* **68**, 638.
7. Abraham, R. J., Cooper, M. A., and Salmon a taker, J. R. (1972) *Org. Magn. Res.* **4**, 489.
8. Coxon, J. M., Hydes, G. J. and Steel, P. J. (1984) *J. Chem. Soc. Perkin Trans. II* 1351.