

NEOLIGNANS, NOR-NEOLIGNANS AND OTHER COMPOUNDS FROM ROOTS OF *KRAMERIA GRAYI**[†]

HANS ACHENBACH, WOLFGANG UTZ, HUMBERTO SÁNCHEZ V.,[†] ELSA M. GUAJARDO TOUCHÉ,[†]
JULIA VERDE S.[†] and XORGE A. DOMÍNGUEZ

Institute of Pharmacy and Food Chemistry, Department of Pharmaceutical Chemistry, University of Erlangen, 91052 Erlangen, Germany; [†]Departamento de Química, Instituto Tecnológico y de Estudios Superiores de Monterrey (ITESM), Monterrey, N. L., Mexico

(Received 19 September 1994)

Key Word Index—*Krameria grayi*; Krameriaceae; roots; neolignans; nor-neolignans; 2-(4-methoxyphenyl)-5-((E)-1-propenyl)benzofuran.

Abstract—From the roots of *Krameria grayi*, a new nor-neolignan was isolated, besides 14 known lignan-type and three cycloartane-type compounds.

INTRODUCTION

Recently we reported on the constituents isolated from a hexane extract of the aerial parts of the Mexican *Krameria grayi* [2]. We have now started a phytochemical investigation of the roots of this species, which are used by Shoshoni Indians to prepare a wash against eye infections [3].

RESULTS AND DISCUSSION

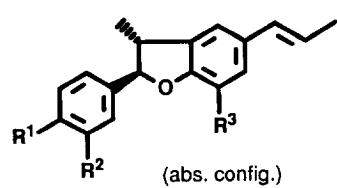
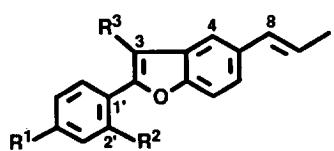
Chromatographic separation of a dichloromethane extract of the roots from *K. grayi* yielded the hitherto unknown nor-neolignan **1** and the known constituents **2–18** [4–10]. The structures were determined by spectroscopic methods and/or by comparison with authentic substances.

The ¹H NMR spectrum of **1** exhibited a close similarity to that of **3** [4]. However, the singlet for the methyl substituent at C-3 was missing and an additional doublet (1H, *J* = 1 Hz) at δ 7.10 revealed that **1** was the corresponding nor-neolignan with a hydrogen at C-3 [5]. Consequently, **1** was prepared by methylation of **19**, which has recently been isolated from *K. ixina* [4].

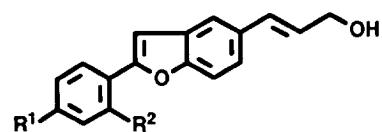
Compound **15** was isolated from *K. lanceolata* for the first time and a low $[\alpha]_D$ value had been registered [7]. However, the substance from *K. grayi* was found to be a racemate by ¹H NMR studies with the chiral shift reagent Eu(TFC)₃ [11], which revealed a significant doubling of the signal pattern for one of the protons at

C-7. Since **15** contains the structural features of a benzyl alcohol, the racemate might occur due to facile proton-catalysed epimerization at the alcohol group.

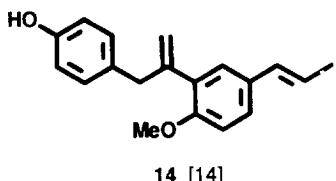
Considering the isolated constituents, it seems of chemotaxonomic interest that ratanhiaphenol **I** (**5**) now has been isolated from *K. grayi* also, thus showing that **5** obviously represents a chemotaxonomic marker for plants of the Krameriaceae family. This nor-neolignan has always been isolated as a major constituent from all the *Krameria* species examined up to now [1, 4–8, 12–14], but, according to our knowledge, **5** has not yet been detected in any other plant family.



Compounds **2**, **9** and **14** are also major components of the root extract of *K. grayi*, while the other compounds have to be regarded minor or very minor constituents.

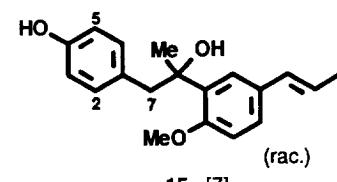
EXPERIMENTAL


General. TLC was performed on silica gel with detection by UV or anisaldehyde [15] followed by heating. IR spectra were recorded in CHCl₃ solns. UV spectra were measured in MeOH. ¹H NMR spectra were recorded in Me₂CO-*d*₆ and CDCl₃, respectively; int. standard TMS. Eu(TFC)₃ was used for shift measurements of **15** [11]. MS were run at 70 eV using a direct inlet system. Identification of **2–16** was based on comparison with authentic substances [1, 4–8]. Compounds **17** and **18** were identified from their physicochemical properties [9, 10].

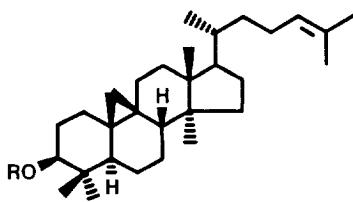
Plant material. Roots of *K. grayi* Rose & Painter were collected in November 1990 in San Joaquin de los Azufres, Mina, N. L. (Mexico). Identification was made by Prof. Humberto Sánchez V. and a voucher specimen is


*Part 10 in the series "Studies on Krameriaceae". For Part 9 see ref. [1].

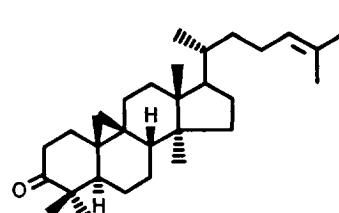
	R ¹	R ²	R ³	Ref.
1	OMe	H	H	
2	OH	H	Me	[5]
3	OMe	H	Me	[4]
4	OH	OH	H	[5]
5	OMe	OH	H	[5]
6	OMe	OMe	H	[6]
19	OH	H	H	[4]



13 [1]



14 [14]


	R ¹	R ²	Ref.
11	OMe	OH	[1]
12	OH	OMe	[1]

15 [7]

	R	Ref.
16	OH	[8]
17	Feruloyl	[9]

18 [10]

kept at the ITESM herbarium (Reg. ITESM No. 8746) in Monterrey, N. L. (Mexico).

Extraction and chromatography. Dried roots (222 g) were extracted exhaustively with CH_2Cl_2 to yield 3.8 g extract, which was first passed over Fractogel TSK HW-40 (s) (Merck) using $\text{MeOH}-\text{CHCl}_3$ (7:3). Frs were repeatedly chromatographed on silica gel using $\text{CHCl}_3-\text{MeOH}$ and cyclohexane-EtOAc mixts and on Fractogel PVA 500 (Merck) using $\text{MeOH}-\text{CHCl}_3$ (7:3).

2-(4-Methoxyphenyl)-5-((E)-1-propenyl)benzofuran (1). Amorphous (1 mg). TLC: R_f 0.42 (cyclohexane-EtOAc, 4:1); anisaldehyde reagent: grey. IR ν_{max} cm^{-1} : 2916, 1615, 1508. UV λ_{max} nm (log ε): 224 (4.26), 256 (4.33), 272 (sh, 4.27), 291 (4.31), 304 (4.29), 318 (4.22), 325 (sh, 4.19), 333 (sh, 4.10). $^1\text{H NMR}$ ($\text{Me}_2\text{CO}-d_6$): δ 1.87 (3H, dd, $J_1 = 6, J_2 = 1.5$ Hz, Me-10), 3.85 (3H, s, OMe), 6.26 (1H, dq, $J_1 = 16, J_2 = 6$ Hz, H-9), 6.52 (1H, dm, $J = 16$ Hz, H-8), 7.06 (2H, AA' BB'-system, H-3', H-5'), 7.10 (1H, d, $J = 1$ Hz, H-3), 7.33 (1H, dd, $J_1 = 8, J_2 = 1.5$ Hz, H-6), 7.45 (1H, br d, $J = 8$ Hz, H-7), 7.56 (1H, d, $J = 1.5$ Hz, H-4), 7.86 (2H, AA' BB'-system, H-2', H-6'). MS m/z (rel. int.): 264.1151 (100, $[\text{M}]^+$, calcd for $\text{C}_{18}\text{H}_{16}\text{O}_2$: 264.1150), 249 (32), 235 (7), 178 (8), 165 (8) 135 (10).

Acknowledgements—We thank the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie for financial support. Thanks are also due to CONACYT for a research grant.

REFERENCES

1. Achenbach, H., Utz, W. and Domínguez, X. A. (1993) *Phytochemistry* **34**, 835.
2. Domínguez, X. A., Verde S. J., Rombold, C., Valdez, D., Moreno, S., Achenbach, H. and Groß, J. (1988) *Planta Med.* **5**, 479.
3. Simpson, B. B. (1989) *Flora Neotropica*, Monograph 49, p. 52. The New York Botanical Garden, New York.
4. Achenbach, H., Utz, W., Usabilaga, A. and Rodríguez, H. A. (1991) *Phytochemistry* **30**, 3753.
5. Achenbach, H., Groß, J., Domínguez, X. A., Cano, G., Verde S. J., Brussolo, L. d. C., Muñoz, G., Salgado, F. and López, L. (1987) *Phytochemistry* **26**, 1159.
6. Achenbach, H., Groß, J., Domínguez, X. A., Verde S. J. and Salgado, F. (1987) *Phytochemistry* **26**, 2041.
7. Achenbach, H., Groß, J., Bauereiß, P., Domínguez, X. A., Sánchez V., H., Verde S. J. and Rombold, C. (1989) *Phytochemistry* **28**, 1959.
8. Domínguez, X. A., Espinoza B., G. C., Rombold, C., Utz, W. and Achenbach, H. (1992) *Planta Med.* **58**, 382.
9. Ohta, G. and Shimizu, M. (1957) *Pharm. Bull.* **5**, 40.
10. Davies, N. W., Miller, J. M., Naidu, R. and Sotheeswaran, S. (1992) *Phytochemistry* **31**, 159.
11. Parker, D. (1991) *Chem. Rev.* **91**, 1441.
12. Arnone, A., Modugno, V. di, Nasini, G. and Venturini, I. (1988) *Gazz. Chim. Ital.* **118**, 675.
13. Domínguez, X. A., Sánchez V., H., Espinoza B., G. C., Verde S. J., Achenbach, H. and Utz, W. (1990) *Phytochemistry* **29**, 2651.
14. Domínguez, X. A., Rombold, C., Verde S. J., Achenbach, H. and Groß, J. (1987) *Phytochemistry* **26**, 1821.
15. Stahl, E. (1967) *Dünnschichtchromatographie*, p. 817. Springer, Berlin.