

PRENYLATED LIGNANS FROM *HAPLOPHYLLUM PTILOSTYLOM*

AYHAN ULUBELEN,*† ROBERTO R. GIL,‡ GEOFFREY A. CORDELL,‡ ALI H. MERİÇLİ* and FILİZ MERİÇLİ*

*Faculty of Pharmacy, University of Istanbul, 34452 Istanbul, Turkey; †Department of Chemistry, Marmara Research Center, TUBITAK, P.O. Box 21, 41470 Gebze-Kocaeli, Turkey; ‡Program for Collaborative Research in the Pharmaceutical Sciences, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, U.S.A.

(Received in revised form 14 September 1994)

Key Word Index—*Haplophyllum pilostylum*; Rutaceae; aryltetralin lignan; prenylated diarylbutyrolactone lignans; structure determination; 2D NMR.

Abstract—In addition to previously isolated coumarins and lignans, we have obtained one new aryltetralin lignan and three new prenylated diarylbutyrolactone lignans from the aerial parts of *Haplophyllum pilostylum*. The structures of the new compounds were established by ¹H NMR, ¹³C NMR (BB and DEPT), COSY, HETCOR, COLOC and selective INEPT experiments.

INTRODUCTION

In previous phytochemical investigations of the aerial parts of *Haplophyllum pilostylum* Spach, we reported the isolation of three new coumarins, ptilostin, ptilostol [1] and ptilin [2], and four known lignans, justicin B and isodaurinol [1], and matairesinol and arctigenin [2]. Further investigation of the same extract of the plant yielded four new lignans. The first was an aryltetralin lignan with the structure and absolute configuration shown in 1. A compound with the structure described as the enantiomer of 1 was isolated from *Heliosp. buphtalmoides* [3], but the authors reported only the ¹H NMR spectrum; neither the $[\alpha]_D$ nor the ¹³C NMR spectrum was reported. For compound 1, we have obtained the CD curve, and also present a complete set of NMR assignments determined using COSY, HETCOR, selective INEPT experiments [4–6] and molecular modelling. The other three lignans were the diarylbutyrolactones 4–6, all of which possess an isoprene-derived side chain, which is rather unusual in the lignan family. There is only one other report concerning lignans with this substitution, and that is the 3-methylbutenyl ether (7) of pluviatilol obtained from the bark of *Zanthoxylum podocarpum* Hems. [7, 8]. According to these authors, compound 7 is of considerable biogenetic interest, since the interpolation of a mevalonate-derived substructure into a lignan has not been seen previously, although mixed biogenetic routes are common in other classes. The structures of compounds 4–6 were established by various ¹H and ¹³C NMR spectroscopic techniques.

RESULTS AND DISCUSSION

The EI-mass spectrum of compound 1 indicated a molecular formula of C₂₀H₁₆O₆. The ¹³C NMR spectrum

(DEPT) revealed the presence of four methylene, eight methine and eight quaternary carbons, and the ¹H NMR spectrum indicated an aryltetralin structure (see ¹H NMR spectroscopic data in the Experimental). The vicinal *J* values in 1 indicated a *trans* diaxial relationship between H-1 and H-2 (*J* = 11 Hz) and H-2 and H-3 (*J* = 13.7 Hz). The ¹H NMR spectrum was superimposable with that reported previously [3], but the assignments of H-5 and H-8 should be interchanged. The COSY spectrum showed cross-peaks between the signal corresponding to H-4 (α and β) and the signal at δ 6.56, and the signal corresponding to H-1 and that at δ 6.30, inferring that the first resonance is H-5 and the second is H-8. In ref. [3], H-5 is reported at δ 6.32 and H-8 at 6.58. These reassessments were confirmed by the selective INEPT experiment (Table 1), since the irradiation of H-1 (δ 4.02) enhanced the signal of C-8 (δ 109.9) and this signal showed a correlation with the broad singlet at δ 6.30 in the HETCOR spectrum.

We have generated the structure of 1 with the molecular modelling program PCMODEL386 V 4.0 and comparison of the calculated vs the observed coupling constants involving the aliphatic protons led to the unambiguous assignment of all protons, also differentiating H-4 α from H-4 β , and H-3a α from H-3a β (Table 2). The vicinal coupling constants were calculated, and the signals corresponding to those carbons bearing hydrogen were identified using the HETCOR spectrum. Considering that the chemical shifts of C-5' (δ 108.1) and C-6' (δ 123.0) are quite different, using HETCOR we could assign the A part of the AB system centred at δ 6.75 to H-5' and the B part to H-6'. The selective INEPT experiment not only led to the assignment of the signals of the quaternary carbons, but also permitted identification of the dioxyethylene moiety of each ring. The cross-peaks

Table 1. Selective INEPT experiments on compound **1** (CDCl_3 , 90.8 MHz)

Proton irradiated	δ (ppm)	Carbons enhanced
5', 6'	6.75	136.8 (C-1'), 146.4 (C-4')
2', 5	6.56	146.6 (C-6), 146.3 (C-7), 108.1 (C-5'), 109.9 (C-8), 46.1 (C-1), 33.0 (C-4)
8	6.30	146.6 (C-6), 146.3 (C-7), 127.8 (C-4a), 46.1 (C-1)
-OCH ₂ O-	5.91	147.7 (C-3'), 146.4 (C-4')
-OCH ₂ O-	5.86	146.6 (C-6), 146.3 (C-7)
3a α	4.48	175.3 (C-2a), 48.8 (C-2), 39.9 (C-3)
1	4.02	175.3 (C-2a), 136.8 (C-1'), 132.6 (C-8a), 127.8 (C-4a), 123.0 (C-6'), 109.9 (C-8), 48.8 (C-2)
3a β	3.95	39.9 (C-3), 33.0 (C-4)
4 β	2.94	132.6 (C-8a), 127.8 (C-4a), 108.4 (C-5), 39.9 (C-3)
4 α	2.87	132.6 (C-8a), 127.8 (C-4a), 108.4 (C-5), 70.9 (C-3a), 39.9 (C-3)
3	2.57	70.9 (C-3a), 48.8 (C-2)
2	2.46	136.8 (C-1'), 46.1 (C-1), 33.0 (C-4)

Table 2. Observed vs calculated proton-proton *J* values for compound **1**

Proton	Obs. <i>J</i> (Hz)	Calc. <i>J</i> (Hz)
1-2	11	12.7
2-3	13.7	12.5
3-3a α	10.5	11.5
3-3a β	6.5	7.5
3a α -3a β	8.6	—
3-4 α	11	12.2
3-4 β	5.0	3.7
4 α -4 β	15	—
2'-5'	< 1	—
2'-6'	1.5	—
5'-6'	7.9	—

in the HETCOR spectrum showed the following pairs for the -OCH₂O- groups, δ 5.91 with 101.0 and δ 5.86 with 101.1. Irradiation of the signal at δ 5.86 enhanced the signals at δ 146.6 and 146.3. As these two signals were also enhanced when H-8 was irradiated (δ 6.30), the signals at δ 5.91 and 101.0 were assigned to the -OCH₂O- attached to ring A, and the signals at δ 146.6 and 146.3 were assigned to C-6 and C-7, respectively. Irradiation of the other dioxymethylene protons at δ 5.91 enhanced the signals at δ 147.7 and 146.5, assigned to C-3' and C-4', respectively [9]. The other irradiations substantiated the structure of **1**.

The assignments of the aromatic carbons by ¹³C NMR spectroscopy were in good agreement with those reported for the two isomers polygamain (**2**) [10-12] and picropolygamain (**3**) [12], and the differences between the ¹³C NMR spectra of these three isomers are listed in Table 3. Finally, the CD curve of **1** showed a couplet of negative sign at 289 nm that, according to Hulbert *et al.* [13], is indicative of the β configuration of the aryl group at C-1. Also, the longer wavelength branch is greater than the other in this couplet, corresponding to a quasi-equatorial orientation of the aryl group at C-1 [13]. These

Table 3. ¹³C NMR data for lignans **1-3** (CDCl_3 , 90.8 MHz)

C	1	2*	3*
1	46.1	43.2	44.7
2	48.8	47.2	45.9
2a	175.3	174.4	178.0
3	39.9	32.5	32.7
3a	70.9	71.9	72.6
4	33.0	33.0	31.9
4a	127.8	128.1	128.0
5	108.4	108.3	108.1
6	146.6	146.9	146.6
7	146.3	146.3	146.1
8	109.9	110.2	109.6
8a	132.6	131.0	130.6
1'	136.8	134.4	136.1
2'	109.0	111.0	108.7
3'	147.7	147.1	147.8
4'	146.4	146.7	146.6
5'	108.1	107.5	108.0
6'	123.0	124.0	120.4
-OCH ₂ O-	101.1	101.0	100.9
-OCH ₂ O-	101.0	100.8	100.8

*Data taken from ref. [12].

observations were substantiated in the computer generated model.

The CIMS of the second lignan **4** indicated a molecular formula of $C_{30}H_{40}O_8$, and the ¹³C NMR (DEPT) spectrum revealed the presence of five methyl, six methylene, 10 methine and nine quaternary carbons (Table 4). The ¹H NMR spectrum of **4** (see Experimental) indicated the presence of matairesional and 6",7-dihydroxygeraniol moieties. The carbon chemical shifts involving C-7, C-8, C-9, C-7', C-8' and C-9' were characteristic of a *trans*-fused five-membered lactone ring [14].

The structure of **4** was solved mainly on the basis of a combination of COSY, HETCOR and COLOC spectra, and a series of selective INEPT experiments.

Table 4. ^{13}C NMR data for lignans **4–6** (CDCl_3 , 90.8 MHz)

C	4	5	6
1	130.6	131.6	130.4
2	111.9	108.7	111.9
3	149.4	147.8	149.5
4	146.8	146.3	147.1
5	113.3	113.1	113.1
6	120.4	121.5	120.5
7	38.1	38.3	38.3
8	40.9	41.1	41.2
9	71.3	71.1	71.2
1'	129.4	130.1	131.3
2'	111.5	112.4	109.5
3'	146.7	149.5	147.8
4'	144.4	147.2	146.4
5'	114.1	113.1	108.1
6'	122.0	121.2	122.2
7'	34.4	34.8	34.8
8'	46.5	46.5	46.5
9'	178.8	178.4	178.4
1''	65.8	65.8	65.8
2''	120.1	119.9	119.9
3''	140.5	137.6	137.6
4''	36.5	25.8	25.8
5''	29.3	18.2	18.2
6''	77.9	—	—
7''	73.0	—	—
8''	26.4	—	—
9''	23.2	—	—
10''	16.2	—	—
OMe	55.8	55.8	55.8
OMe	55.8	—	—
OCH ₂ O	—	101.0	101.0

A few critical details of the elucidation strategy are presented here. The AB part of the ABX system centred at δ 2.90, and corresponding to H-7', showed correlations in the COLOC spectrum with C-9' (δ 178.8), C-1' (δ 129.4), C-6' (δ 122.1) and C-2' (δ 111.5). Then, the HETCOR experiment led to the assignment of H-2' and H-6', and these signals showed correlations with H-5' in the COSY spectrum, leading to the assignment of the protons and their respective carbons in this aromatic ring. We could then assign the signals corresponding to H-2, H-5 and H-6, leading to the assignment of their respective carbons through the HETCOR correlations.

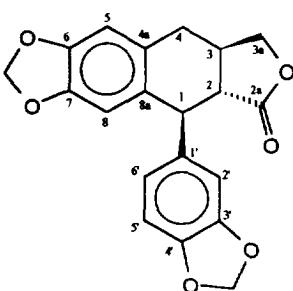
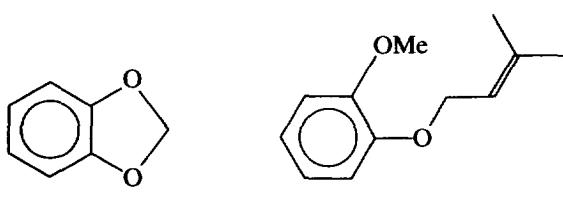
The position of the side chain was determined by a selective INEPT experiment (Table 5), because irradiation of H-2, as well as irradiation of H-1'', enhanced the quaternary carbon signal at δ 146.8 (C-4), thereby indicating that the 6'',7''-dihydroxy geranylxyloxy moiety was attached to this carbon. The rest of the irradiations, as well as the COLOC correlations (Table 1), were straightforward and yielded the proposed structure. The proximity of the signals corresponding to H-2', H-5', H-6', H-5 and H-6 in the ^1H NMR spectrum led to ambiguous enhancements in the selective INEPT experiment, but this was compensated by the long-range correlations observed in the COLOC spectrum. Finally, the negative Cotton effect observed in the CD curve at 233 nm indicated an absolute configuration as shown in **4** [15].

The third sample was identified as a mixture of the dibenzobutyrolactones **5** and **6**. Various methods were attempted, unsuccessfully, to separate the two isomers. The EI-mass spectrum of this sample showed a single molecular ion peak at m/z 424 ($\text{C}_{25}\text{H}_{28}\text{O}_6$), and the loss of isopentenyl alcohol to give a fragment at m/z 356. Two more important fragments were observed at m/z 135 and

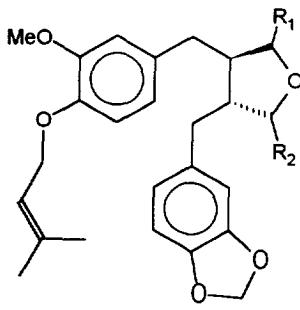
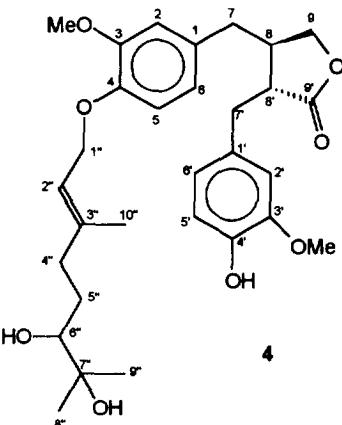
Table 5. Selective INEPT experiments and COLOC correlations for compound **4**

Selective INEPT*			COLOC correlations†		
Proton	δ (ppm)	Carbons enhanced	Proton	δ (ppm)	Carbon
1''	4.55	146.8 (C-4)	7'	2.90	178.8 (C-9')
		140.5 (C-3'')			129.4 (C-1')
		120.1 (C-2'')			122.0 (C-6')
2''	5.52	36.5 (C-4'')	OMe	3.79	111.5 (C-2'')
		16.7 (C-10'')			146.7 (C-3')
10''	1.70	140.5 (C-3'')	OMe	3.77	120.4 (C-6)
		120.1 (C-2'')			146.8 (C-4)
		36.5 (C-4'')			122.0 (C-6')
8''	1.16	77.9 (C-6'')‡	2'	6.62	149.4 (C-3)
		73.0 (C-7'')			130.6 (C-1)
		26.4 (C-8'')			129.4 (C-1')
		23.2 (C-9'')			113.3 (C-5)
9''	1.12	Same as 8''	5'	6.77	144.4 (C-4')
					6' 6.56

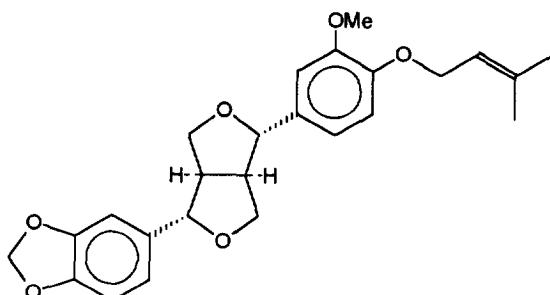
*Recorded in CDCl_3 at 90.8 MHz.



†Recorded in CDCl_3 at 75.4 MHz.

‡Irradiation of H-8'' affects H-9'' and vice versa, producing the same enhancements.



137. The ^1H NMR spectrum (see Experimental) showed the characteristic signals of a dibenzobutyrolactone-type lignan substituted with one dioxymethylene group, one methoxy group and an isopentenyl moiety, but all of the signals, except for those corresponding to the isopentenyl moiety, appeared split in a 2:1 ratio. In the ^{13}C NMR spectrum the splitting was more evident, and, similarly to the ^1H NMR spectrum, the signals corresponding to the side chain did not show splitting. The presence of two conformers was ruled out, firstly, because in the split signals the multiplicity and coupling constants are the same, and secondly, the ^1H NMR spectrum run at higher temperature (50°) did not produce any change in the signals. As in compound **4**, the carbon chemical shifts of

C-7, C-8, C-9, C-7', C-8' and C-9' (including the split signals) were in agreement with *trans*-fusion of the lactone ring [14]. Also, both the ^{13}C and ^1H NMR spectra of **4** were very similar to those of **5/6**, except for the signals of the dioxymethylene group and the side chain, indicating the presence of a mixture of two dibenzobutyrolactones that contain aromatic rings of type A and type B, as shown.


The solution to assigning the aromatic nuclei was the selective INEPT experiment. Irradiation of H-7' (composed of a split AB part of an ABX system, giving rise to two signals with relative intensity 2:1) led to the enhancement of C-1, C-2 and C-6 of each aromatic ring type (A and B) (Table 6), as well as C-9'. The only explanation for the observed enhancement of carbons corresponding to two different aromatic rings is that in one case ring A is attached to C-7', and in the other case ring B. This is possible because the chemical shift of the enhanced carbons is quite different for both aromatic ring types. The more intense set of enhanced signals in Table 6 is that corresponding to the ring A carbons, indicating that the major compound is the one that contains this ring attached to C-7', i.e. structure **6**. The minor compound is **5**. The remaining carbon signals were assigned to each

- 1
2. H-1 β , H-2 β , H-3 α
3. H-1 β , H-2 α , H-3 α

5. R₁ = O= ; R₂ = H
6. R₁ = H ; R₂ = O=

7

Table 6. Selective INEPT experiments on the mixture of **5** and **6** (CDCl_3 , 90.8 MHz)

Proton irradiated	Carbons enhanced	
	5	6
7"	178.4 (C-9')	178.4 (C-9')
	130.1 (C-1')†	131.3 (C-1')‡
	121.2 (C-6')†	122.2 (C-6')‡
	112.3 (C-2')†	109.5 (C-2')‡
	147.2 (C-4')†	147.1 (C-4')‡
1"	119.9 (C-2'')	119.9 (C-2'')
	137.6 (C-3'')	137.6 (C-3'')

*Two overlapped doublets of doublets with a 2:1 intensity ratio centred at δ 2.9.

†Less intense signals.

‡More intense signals.

compound in the mixture considering their relative intensities. Irradiation of H-1" enhanced the signals at δ 147.1 and 147.2 corresponding to C-4 in the type B aromatic ring, and enhancement was also observed in the side chain carbons at δ 119.9 (C-2'') and 137.6 (C-3''), confirming the position of the isopentenyl group. Due to their splitting and the complexity observed in the ^1H NMR spectrum, the aromatic signals were not assigned.

EXPERIMENTAL

General. The ^1H NMR, ^{13}C NMR and DEPT spectra (200 MHz, 500 MHz, 90.8 MHz), were recorded in CDCl_3 with TMS as an int. standard. For the selective INEPT experiments, data sets of 16K covering a spectral width of 10 Hz were acquired. Proton pulse widths were calibrated using a sample of HOAc in 10% C_6D_6 ($^1\text{J} = 6.7$ Hz) in a 5-mm NMR tube [16]. The radio frequency field strength for the soft pulse was of the order of 25 Hz. For aromatic and vinylic protons $^3J_{\text{C}-\text{H}} = 7$ Hz and for aliphatic and hydroxyl protons $^3J_{\text{C}-\text{H}} = 5$ Hz. Computer calculations were performed using the molecular modelling program PCMODEL 386 V 4.0 from Serena Software, Bloomington, Indiana. The vicinal coupling constants were calculated using the Karplus generalized equation developed by Haasnoot *et al.* [17].

Plant material. The aerial parts of *Haplophyllum ptilostylum* were collected from southern Turkey (Ermerne) in June 1992. A voucher specimen is deposited in the Herbarium of the Faculty of Pharmacy, University of Marmara (MARE 3742).

Extraction and separation. The dried and powdered plant material (870 g) was extracted in a Soxhlet with MeOH. The extract was evapd under vacuum to yield a residue (133 g). Half the residue was CC on silica gel using a petrol-Et₂O (0 to 100%) gradients, followed by EtOH as eluent. The new lignans were obtained in the following order: **1** (25 mg, 0.0028%), **4** (30 mg, 0.034%), **5/6** (25 mg, 0.0028%). They were further purified on Sephadex LH-20 columns and on prep. TLC plates.

Compound 1. $[\alpha]_{\text{D}} = -94^\circ$ (CHCl_3 ; *c* 1.2); UV λ^{MeOH} nm (log *e*): 288 (3.8), 235 (4.2); IR ν^{CHCl_3} cm⁻¹: 3050, 2950, 1770, 1620, 1500, 1480, 1440, 1360, 1250, 1225, 1170, 1090, 1040, 910, 830; ^1H NMR (CDCl_3 , 360 MHz): δ 4.02 (1H, *br d*, $J = 11.0$ Hz, H-1), 2.46 (1H, *dd*, $J = 11.0$ and 13.7 Hz, H-2), 2.57 (1H, *m*, H-3), 3.95 (1H, *dd*, $J = 10.5$ and 8.6 Hz, H-3a α), 4.48 (1H, *dd*, $J = 6.5$ and 8.6 Hz, H-3a β), 2.87 (1H, *br dd*, $J = 11$ and 15 Hz, H-4 α), 2.94 (1H, *br dd*, $J = 5$ and 15 Hz, H-4 β), 6.56 (2H, *br s*, H-5 and H-2'), 6.30 (1H, *br s*, H-8), 6.75 (AB part of ABX system, $J_{\text{AB}} = 7.9$, $J_{\text{AX}} < 1$, $J_{\text{BX}} = 1.5$ Hz, part A H-5' and part B H-6'), 5.91 (2H, $-\text{OCH}_2\text{O}-$) and 5.86 (2H, $-\text{OCH}_2\text{O}-$); ^{13}C NMR: Table 3; EIMS *m/z* (rel. int.): 352 [M]⁺ (100), 292 (5), 280 (7), 267 (10), 230 (7), 176 (5), 152 (8), 135 (10). CD $\Delta\epsilon$ (MeCN) (nm): -1.53 (299), 0 (288), +0.77 (280), +0.34 (246), -1.40 (226).

Compound 4. $[\alpha]_{\text{D}} = -18^\circ$ (CHCl_3 ; *c* 0.4); UV λ^{MeOH} nm (log *e*): 282 (4.0), 242 (4.1); IR ν^{CHCl_3} cm⁻¹: 3440, 3070, 2950, 2850, 2830, 1763, 1600, 1520, 1470, 1460, 1440, 1380, 1280, 1240, 1160, 1130, 1040, 830, 800, 760; ^1H NMR (CDCl_3 , 500 MHz): δ 6.44 (1H, *d*, $J = 2$ Hz, H-2), 6.72 (1H, *d*, $J = 8$ Hz, H-5), 6.48 (1H, *dd*, $J = 8$ and 2 Hz, H-6), 2.62 (1H, *dd*, $J = 13$ and 5.5 Hz, H-7a), 2.52 (1H, *dd*, $J = 13$ and 8 Hz, H-7b), 2.48 (1H, *m*, H-8), 4.13 (1H, *dd*, $J = 9$ and 7.5 Hz, H-9a), 3.87 (1H, *dd*, $J = 9$ and 7.5 Hz, H-9b), 6.62 (1H, *d*, $J = 2$ Hz, H-2'), 6.77 (1H, *d*, $J = 8$ Hz, H-5'), 6.56 (1H, *dd*, $J = 8$ and 2 Hz, H-6'), 2.90 (2H, AB part of ABX system $J_{\text{AB}} = 14$ Hz; $J_{\text{AX}} = 5.5$ Hz; $J_{\text{BX}} = 6.5$ Hz, H-2'), 2.56 (1H, *ddd*, $J = 6.5$, 5.5 and 5 Hz, H-8'), 3.78 (3H, *s*, OMe), 3.76 (3H, *s*, OMe), 4.55 (2H, *d*, $J = 6.5$ Hz, H-2'), 5.52 (1H, *br t*, $J = 6.5$ Hz, H-2''), 2.32 (1H, *ddd*, $J = 15$, 10 and 4.5 Hz, H-4'a), 2.12 (1H, *ddd*, $J = 15$, 9 and 7 Hz, H-4'b), 1.61 (1H, *m*, H-5'a), 1.44 (1H, *m*, 5b), 3.30 (1H, *dd*, $J = 10$ and 1.5 Hz, H-6''), 1.16 (3H, *s*, H-2''), 1.12 (3H, *s*, H-3''), 1.70 (3H, *br s*, H-3''). ^{13}C NMR: Table 4. CIMS *m/z* (rel. int.): 529 [M + 1]⁺ (3), 359 [M - side chain + 1]⁺ (27), 358 [M - side chain]⁺ (29), 341 (7), 153 (100). CD $\Delta\epsilon$ (MeOH) (nm): -0.55 (233).

Mixture of 5 and 6. UV λ^{MeOH} nm (log *e*): 283 (3.8), 234 (4.2); IR ν^{CHCl_3} cm⁻¹: 3040, 2950, 2840, 1770, 1610, 1590, 1520, 1485, 1440, 1420, 1380, 1240, 1190, 1160, 1040, 1020, 930. ^1H NMR (CDCl_3 , 360 MHz): δ 6.8-6.4 (6H, aromatic protons), 5.91 (2H, $-\text{OCH}_2\text{O}-$), 5.49 (1H, *m*, H-2'), 4.53 (2H, *br d*, $J = 6.5$ Hz, H-2'), 4.13 in **6** and 4.10 in **5** (1H, *dd*, $J = 9.5$ and 7.5 Hz, H-9a), 3.86 in **6** and 3.81 in **5** (1H, *dd*, $J = 9.5$ and 7.5 Hz, H-9b), 3.79 in **6** and 3.80 in **5** (3H, *s*, OMe), 2.89 in **6** and 2.91 in **5** (2H, centre of AB part of ABX system, $J_{\text{AB}} = 14.5$ Hz, $J_{\text{AX}} = 5.5$ Hz, $J_{\text{BX}} = 6.8$ Hz, H-2'), 2.4-2.6 (4H, complex *m*, H-2', H-8, H-8'). 1.75 (3H, *br s*, H-3''), 1.71 (3H, *br s*, H-3''). ^{13}C NMR: Table 4. EIMS *m/z* (rel. int.): 424 [M]⁺ (21), 4.07 [M - 17]⁺ (3), 356 [M - side chain]⁺ (100), 339 (5), 137 (23), 135 (34).

Bioassay. Compounds **1** and **4** were inactive against the following cell lines: human lung carcinoma LU-1, hormone-dependent human prostate and hormone-dependent human breast cancer [18]. Compound **1**, when tested on HIV-1 reverse transcriptase (p66/p51) assay [19], showed moderate activity ($\text{IC}_{50} = 11.7 \mu\text{g ml}^{-1}$).

Acknowledgements—This study was supported by TUBITAK (Ankara-Turkey) TBAG-960. Additional support was provided, in part, by a grant from the Division of Cancer Treatment, National Cancer Institute, Bethesda, MD. We thank Dr John M. Pezzuto for biological tests, the Research Resources Center at UIC for the provision of NMR spectroscopic facilities, and Prof. Petr Pancoska from Department of Chemistry at UIC for the CD spectra. R.R.G. wishes to thank CONICET—Argentina for a post-doctoral fellowship.

REFERENCES

1. Ulubelen, A., Meriçli, A. H., Meriçli, F. and Tan, N. (1993) *J. Nat. Prod.* **56**, 1184.
2. Ulubelen, A., Meriçli, A. H., Meriçli, F. and Tan, N. (1993) *Nat. Prod. Letters* **3**, 145.
3. Jakupovic, J., Schuster, A., Bohlmann, F., King, R. M. and Robinson, H. (1986) *Planta Medica* **18**.
4. Bax, A. J. (1984) *J. Magn. Reson.* **57**, 314.
5. Cordell, G. A. (1991) *Phytochem. Anal.* **2**, 49.
6. Cordell, G. A. and Kinghorn, A. D. (1991) *Tetrahedron* **47**, 3521.
7. Whiting, D. A. (1987) *Nat. Prod. Rept.* **4**, 499.
8. Ren, L.-J., Xie, F.-Z., Feng, J.-X. and Xue, Z. (1984) *Yaoxue Xuebao* **19**, 268 (*Chem. Abstr.* (1985) **103**, 19 810).
9. Shieh, H. L., Cordell, G. A., Lankin, D. C. and Lotter, H. (1990) *J. Org. Chem.* **55**, 5139.
10. Hokanson, G. C. (1979) *J. Nat. Prod.* **42**, 378.
11. Sheriha, G. M., Abouamer, K., Elshtaiwi, B. Z., Ashour, A. S., Abed, F. A. and Alhallaq, H. H. (1987) *Phytochemistry* **26**, 3339.
12. Proven, G. J. and Waterman, P. G. (1985) *Planta Medica* **271**.
13. Hulbert, P. B., Klyne, W. and Scopes, P. M. (1981) *J. Chem. Res. (S)* 1981.
14. Ayres, D. C. and Loike, J. D. (1990) *Lignans. Chemical, Biological and Clinical Properties*, p. 200. Cambridge University Press, Cambridge.
15. Ayres, D. C. and Loike, J. D. (1990) *Lignans. Chemical, Biological and Clinical Properties*, p. 250. Cambridge University Press, Cambridge.
16. Bax, A. (1983) *J. Magn. Reson.* **52**, 76.
17. Haasnoot, C. A. G., de Leeuw, F. A. A. M. and Altona, C. A. (1980) *Tetrahedron* **36**, 2783.
18. Likhitwitayawuid, K., Angerhofer, C. K., Cordell, G. A., Pezzuto, J. M. and Ruangrungsi, N. (1993) *J. Nat. Prod.* **56**, 30.
19. Tatematsu, H., Kilkuskie, R. E., Bodner, A. J. and Lee, K. H. (1991) *J. Nat. Prod.* **54**, 632.