

3-DESOXYCALLUNIN AND 2"-ACETYLCALLUNIN, TWO MINOR 2,3-DIHYDROFLAVONOID GLUCOSIDES FROM *CALLUNA VULGARIS**

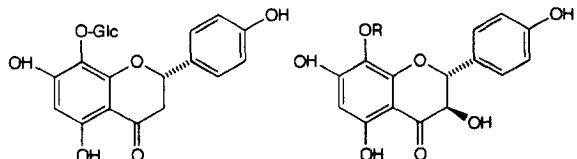
DAOVY P. ALLAIS, ALBERT J. CHULIA,† MOURAD KAOUDJI,‡ ALAIN SIMON§ and CHRISTIANE DELAGE§

Equipe Biomolécules, Laboratoire de Pharmacognosie et de Phytochimie; §Laboratoire de Chimie Physique, UFR de Pharmacie, Université de Limoges, 2 Rue Docteur Marcland, F-87025 Limoges, Cédex France; ‡Laboratoire de Chimie des Substances Naturelles, Université de Limoges, 123 Avenue A. Thomas, F-87060 Limoges, Cédex, France

(Received 21 September 1994)

Key Word Index—*Calluna vulgaris*; Ericaceae; heather flowers; callunin; (2R,3R)-5,7,8,4'-tetrahydroxydihydroflavonol 8-glucoside; 2"-acetylcallunin; (2R,3R)-5,7,8,4'-tetrahydroxydihydroflavonol 8-(2"-acetylglucoside); 3-desoxycallunin; (2R)-5,7,8,4'-tetrahydroxyflavanone 8-glucoside.

Abstract—The ethyl acetate soluble fraction obtained from the acetone extract of fresh *Calluna vulgaris* heather flowers afforded a mixture of two minor 2,3-dihydroflavonoid glucosides. Separations were achieved by column chromatography on polyamide as well as by reversed phase MPLC and HPLC. Structural elucidations were performed by UV, ¹H and ¹³C NMR. The two novel compounds which are related to the major constituent, callunin were identified as 3-desoxycallunin and 2"-acetylcallunin. This is the first report of a flavanone 8-glucoside and the second report of a dihydroflavonol 8-glucoside in the plant kingdom.


INTRODUCTION

Calluna vulgaris (L.) Hull., a member of the Ericaceae, has been the subject of several previous phytochemical investigations. The major flower constituents have been identified as the flavonol aglycones kaempferol [2], quercetin [3-5] and myricetin [6, 7] and the flavonol glycosides galangin 3-methyl ether 7-glucoside [5], quercetin 3-glucoside, 3-galactoside and 3-arabinoside [5], herbacetin 8-glucoside and 8-gentiobioside [3, 5]. More recently, three acyldiglycosides, kaempferol- and quercetin 3-triacetylarabinosylglucoside and quercetin 3-triacetylarabinosylgalactoside have been described in this species [7-10]. Also two dihydroflavonols, taxifolin 3-glucoside [5] and callunin (2) [5, 11] have been reported. The only representatives of the flavone and the anthocyanin classes are apigenin 7-(2"-acetylglucuronic acid methyl ester) [7] and cyanidin 3-glucoside [12], respectively. We report here the findings of a further phytochemical examination of fresh heather flowers. Two dihydroflavonoid glucosides 1 and 3 were isolated and their identity established by UV, ¹H and ¹³C NMR spectral analysis.

RESULTS AND DISCUSSION

The isolation of the two minor 2,3-dihydroflavonoid glucosides 1 and 3 was accomplished by a polarity gradi-

ent partitioning of the acetone extract against petrol ether and chloroform to remove non-polar constituents, followed by ethyl acetate and *n*-butanol to extract glycosides and then by repeated chromatography of the ethyl acetate-soluble portion. Final purification was achieved by reverse phase HPLC (see Experimental). UV, ¹H and ¹³C NMR data suggested a 2,3-dihydroflavonoid glucoside structure for both compounds. Thus, the UV spectra showed two bands at λ 293 and 338 nm which were similar to those exhibited by the reference compound callunin (2). The main 293 band was shifted by alkali to λ 328 nm indicating the presence of a free 7-hydroxyl group in both compounds. Furthermore the shifts observed with aluminium trichloride (λ 318 and 398 nm) were not reversed on the addition of HCl [13, 15], indicating a free 5-hydroxyl in both 1 and 3, which was confirmed by the sharp singlet at δ 12.05 ppm for 1 and 11.73 for 3 in the ¹H NMR run in DMSO-*d*₆. This was in agreement with the singlets pointed at δ 5.91 and δ 5.93 for 1 and 2, respectively (Table 1) and which reflected

*Part 10 in the series 'Phytochemistry of the Ericaceae'. For Part 9, see ref. [1].

†Author to whom correspondence should be addressed.

Table 1. ^1H NMR spectra of flavonoid glucosides 1–3*

H	1†	1‡	2†	2‡	3†
2	5.42 <i>br d</i> (11.8–3.0)	5.45 <i>dd</i> (11.8–4.0)	4.47 <i>br d</i> (11.4)	4.40 <i>br d</i> (11.1)	4.63 <i>br d</i> (11.4)
3			5.03 <i>d</i> (11.4)	5.09 <i>d</i> (11.1)	5.03 <i>d</i> (11.4)
3 _A	3.04 <i>dd</i> (17.2–11.8)	3.02 <i>dd</i> (17.1–11.8)			
3 _B	2.75 <i>dd</i> (17.2–3.0)	2.80 <i>dd</i> (17.1–4.0)			
6	5.91 <i>s</i>	5.93 <i>s</i>	5.96 <i>s</i>	5.98 <i>s</i>	5.93 <i>s</i>
HO-5		12.01 <i>s</i>		11.73 <i>s</i>	
2',6'	7.37 <i>d</i> (8.5)	7.39 <i>d</i> (8.4)	7.38 <i>d</i> (8.5)	7.36 <i>d</i> (8.5)	7.39 <i>d</i> (8.6)
3',5'	6.78 <i>d</i> (8.5)	6.76 <i>d</i> (8.4)	6.79 <i>d</i> (8.5)	6.76 <i>d</i> (8.5)	6.81 <i>d</i> (8.6)
1''	4.61 <i>d</i> (6.4)	4.52 <i>d</i> (6.8)	4.60 <i>d</i> (7.2)	4.54 <i>d</i> (7.0)	under H_2O peak
2''	3.20–3.40 <i>m</i>	3.20–3.50 <i>m</i>	3.20–3.40 <i>m</i>	3.10–3.20 <i>m</i>	4.80 <i>m</i>
3''	3.20–3.40 <i>m</i>	3.20–3.50 <i>m</i>	3.20–3.40 <i>m</i>	3.20–3.20 <i>m</i>	3.45 <i>t</i> (8.3)
4''	3.20–3.40 <i>m</i>	3.20–3.50 <i>m</i>	3.20–3.40 <i>m</i>	3.10–3.20 <i>m</i>	3.30 <i>m</i>
5''	3.20–3.40 <i>m</i>	3.20–3.40 <i>m</i>	3.20–3.40 <i>m</i>	3.10–3.20 <i>m</i>	3.30 <i>m</i>
6''	3.70 <i>m</i>	3.20–3.50 <i>m</i>	3.37 <i>m</i>		3.68 <i>m</i>
6'' _A				3.52 <i>d</i> (11.4)	
6'' _B				3.45 <i>br d</i> (11.4)	
AcO-2''					1.59 <i>s</i>

*At 200 MHz for 1 and 3 and 400 MHz for 2.

†In CD_3OD (δ 3.27).‡In $\text{DMSO}-d_6$ (δ 2.49). *J* (Hz) in parentheses.

a 5,6,7- or 5,7,8-trisubstituted A-ring. It was thus demonstrated that two hydroxyl groups are located on the A-ring. Another one must be on the B-ring at position 4' as indicated by the upfield doublet for H-3', H-5' at δ 6.78 for 1 and δ 6.81 in 2, respectively (Table 1). For flavonoid glycoside 1, three further protons recorded at δ 5.42 (*J* = 11.8–3 Hz), δ 3.04 (*J* = 17.2–11.8 Hz) and δ 2.75 (*J* = 17.2–3 Hz) were ascribable, respectively, to H-2, H-3_A and H-3_B on the C-ring of a flavanone structure because of their multiplicity and coupling constants [17]. These ^1H NMR data required that the aglycone be a 5,6,7,4'- or a 5,7,8,4'-tetraoxxygenated flavanone. The ^{13}C NMR of the glycoside itself confirmed these findings and the six signals at δ 107.2, 78.3, 77.6, 75.2, 70.7 and 62.2 ppm defined 1 as a monoglucoside (Table 2) [18–20]. Thus, the sugar unit is linked through a phenolic group to the A-ring at either the 6- or the 8-position. Evidence for localization of the glucose moiety was given by ^{13}C NMR and particularly by the quaternary C-8 peak (δ 127.5), which could not be confused with a quaternary C-6 generally appearing towards δ 130 [18, 20]. This result is obviously confirmed by the upfield signals relative to the conjugated position C-5 (δ 158.9), C-7 (δ 162.0) and C-9 (δ 155.4) owing to the electron donating 8-O-substituent [18, 20]. Therefore, from the foregoing evidence compound 1 is identified as 3-desoxycallunin, a new natural product.

The third dihydroflavonoid glycoside isolated from the same source, exhibited similar *R_f* values to 1 on silica gel and cellulose (BAW) TLC but showed more polar behaviour on cellulose (5% HOAc) TLC and reverse phase HPLC (aq. MeOH) (Table 3). Both ^1H and ^{13}C NMR spectra (Tables 1 and 2) revealed a 2,3-dihydroflavonol glycoside from the doublet (*J* = 11.4 Hz) at δ 4.63 for H-3

Table 2. ^{13}C NMR spectra of flavonoid glucosides 1–3*

C	1	2	3
2	80.6	85.1	85.2
3	44.0	73.8	73.0
4	197.7	198.6	198.0
5	158.9	159.2	159.5
6	97.4	97.7	98.1
7	162.0	161.7	162.2
8	127.5	127.3	127.8
9	155.4	155.2	155.0
10	103.2	101.9	101.7
1'	129.2	129.1	129.3
2',6'	128.8	130.3	130.9
3',5'	116.4	116.2	116.3
4'	161.5	161.2	161.3
1''	107.2	107.0	104.1
2''	75.2	75.3	75.8†
3''	78.3	78.4	75.0†
4''	70.7	70.8	70.5
5''	77.6	77.6	78.1
6''	62.2	62.2	61.7
AcO-2''			20.6
			168.3

*At 50 MHz, in CD_3OD (δ 49.0).

†Assignments with the same superscript in one column may be interchanged.

and the peak at δ 73.0 for the corresponding C atom [14, 16–18, 20]. The osidic moiety identified with glucose by TLC (see Experimental) was, similarly to glucosides 1 and 2, bound through an ether linkage to the flavonoid 8-position as suggested by the ^{13}C NMR resonance at

Table 3. Chromatographic data for flavonoid glucosides 1-3*

Component	<i>R</i> _f values		<i>R</i> _t (min)	
	System 1	System 2	System 3	System 4
1 3-Desoxycallunin	0.62	0.65	0.40	20.0
2 Callunin (8-hydroxydihydrokaempferol 8-glucoside)	0.49	0.53	0.59	5.5
3 2"-Acetylcallunin	0.64	0.69	0.57	8.8

*System 1: silica gel F-254; EtOAc-HCOOH-HOAc-H₂O = 20:1:1:2.
 System 2: Cellulose F-254; *n*-BuOH-HOAc-H₂O = 4:1:5 (upper phase).
 System 3: Cellulose F-254; HOAc-H₂O = 1:19.
 System 4: Radial peak C₁₈ 4μ (8 × 10 mm); MeOH-H₂O-HOAc = 35:64:1 (1 ml min⁻¹).

δ127.8 for C-8 as well as peaks corresponding to the conjugated positions at δ155.0 (C-9), 162.2 (C-7) and 159.5 (C-5) (Table 2). In comparison with dihydroflavonoid glucosides 1 and 2, compound 3 showed an acetyl group on both NMR spectra (δ1.59 and δ20.6 and 168.3) (Tables 1 and 2). The downfield shift of H-2" indicated that the acetyl group was attached to C-2". Further evidence was given by ¹³C NMR. In comparison with the corresponding carbon of callunin, the upfield shift of 2.9 ppm for C-1" and 3.4 ppm for C-3" confirmed acylation at C-2" [18-21]. Surprisingly, the C-2" which was expected to move downfield was not changed as reported for apigenin 7-(2"-acetyl)glucuronic acid methyl ester [9]. Accordingly, 3 is characterized as 2"-acetylcallunin, a previously unknown compound.

2"-Acetylcallunin along with apigenin 7-(2-acetyl)glucuronic acid methyl ester and flavonol 3-triacetylglucosides, was detected by TLC and HPLC in a direct acetone extract of fresh flower material confirming that it is a genuine plant product and is not formed by acyl shift during work up. *Calluna vulgaris* is a species characterized by a diverse flavonoid metabolism where 8-*O*-substitution is often present as well as acylglycosylation. However, 8-*O*-substituted flavonoids are relatively more common in the family Ericaceae than acylated glycosides which are more restricted in their occurrence [7-10, 22-24]. Compound 3 is the only known example of a flavonoid showing both 8-*O*-substitution and acylglycosylation.

EXPERIMENTAL

Plant material. See ref. [7].

General. Microcrystalline cellulose plastic sheets (Merck) and silica gel 60F-254 aluminium sheets (Merck) were used for TLC analysis. UV spectral analyses with the usual shift reagents were made according to standard procedures [13]. Glucose was identified by TLC on silica gel (EtOAc-H₂O-MeOH-HOAc, 13:3:3:4) in the presence of *p*-anisidine phthalate reagent. MPLC was achieved on polyamide SC-6 (Macherey Nagel)

(460 mm × 27 mm i.d.) and silica gel C60-RP18 20-40 μm (Sorsil Prolabo) (460 mm × 15 mm i.d.) using a Büchi 681 pump. Purification was accomplished by semi-prep. HPLC on a Waters model equipped with a 510 pump, a variable wavelength detector and a μbondapak C-18 column (10 μm, 10 × 5 cm). All NMR experiments were performed with either a Bruker AC-200 spectrometer at 200 MHz (¹H) and 50 MHz (¹³C) or a Bruker AM-400 apparatus at 400 MHz (¹H). The solvent signal was used as ref.

Extraction and isolation of the dihydroflavonoid glucosides. The general extraction procedure has been previously reported [7]. The EtOAc extract (14.5 g) was fractionated by polyamide MPLC (250 g) using toluene-MeOH with increasing polarity. Fractions eluted with 20% MeOH (0.8 g) were combined and then subjected to RP18 MPLC (35 g) using H₂O-MeOH gradient. Fractions containing 1 and 3 were eluted with H₂O-MeOH, 80:20, which yielded 110 mg of the impure mixed compounds. Final purification was achieved by semi-prep. reverse phase C₁₈ HPLC packed with 30% aq. MeOH for 1 (16 mg) and 40% aq. MeOH for 3 (9.5 mg).

(2R)-5,7,8,4'-Tetrahydroxy flanone 8-O-β-D-glucoside or 3-desoxycallunin (1). UV $\lambda_{\text{max}}^{\text{MeOH}}$ 291, 337sh; + AlCl₃ 314, 395; + AlCl₃ + HCl 313, 395; + NaOH 243, 324, 424; + NaOAc 251sh, 279sh, 287sh, 327; + NaOAc + H₃BO₃ 291, 327 nm. ¹H NMR: see Table 1. ¹³C NMR: see Table 2. Chromatographic data: see Table 3.

(2R, 3R)-5,7,8,4'-Tetrahydroxy dihydroflavonol 8-O-β-D-(2"-acetylglucoside) or 2"-acetylcallunin (3) powder. UV $\lambda_{\text{max}}^{\text{MeOH}}$: 293, 338sh; + AlCl₃ 318, 398; + AlCl₃ + HCl 316, 395; + NaOH 247, 325; + NaOAc 251sh, 278sh, 284sh, 332; + NaOAc + H₃BO₃ 294, 334 nm. ¹H NMR: see Table 1. ¹³C NMR: see Table 2. Chromatographic data: see Table 3.

Acknowledgements—The authors are grateful to the French M.E.S.R. and to la Région Limousin for financial support. Thanks are due to Mrs S. Bourrut for technical assistance.

REFERENCES

1. Bennini, B., Chulia, A. J. and Kaouadji, M. (1995) *Phytochemistry* **38**, 259.
2. Harborne, J. B. and Williams, C. A. (1973) *Bot. J. Linn. Soc.* **66**, 37.
3. Jalal, M. A., Read, D. J. and Haslam, E. (1982) *Phytochemistry* **21**, 1397.
4. Mantilla, J. L. and Viette, E. (1975) *An. Edafol. Agrobiol.* **34**, 765.
5. Olechnowicz-Stepien, W., Rzadkowska-Bodalska, M. and Lamer-Zarawska, E. (1978) *Pol. J. Chem.* **52**, 2167.
6. Hoppe, H. A. (1975) *Drogenkunde*. Walter de Gruyter, Berlin.
7. Allais, D. P., Simon, A., Bennini, B., Chulia, A. J., Kaouadji, M. and Delage, C. (1991) *Phytochemistry* **30**, 3101.
8. Simon, A., Chulia, A. J., Kaouadji, M., Allais, D. P. and Delage, C. (1993) *Phytochemistry* **32**, 1045.
9. Simon, A., Chulia, A. J., Kaouadji, M., Allais, D. P. and Delage, C. (1993) *Phytochemistry* **33**, 1237.
10. Simon, A., Chulia, A. J., Kaouadji, M. and Delage, C. (1994) *Phytochemistry* **36**, 1043.
11. Lamer-Zarawska, E., Olechnowicz-Ztepien, W. and Krolicki, Z. (1986) *Bul. Pol. Acad. Sci. Bid. Sci.* **34**, 71.
12. Santamour, F. S. and Lucenter, R. A. (1967) *Morris Arb. Bull.* **18**, 12.
13. Mabry, T. J., Markham K. R. and Thomas, M. B. (1970) *The Systematic Identification of Flavonoids*. Springer, Berlin.
14. Chiappini, I., Fardella, G., Menghini, A. and Rossi, C. (1982) *Planta Med.* **44**, 159.
15. Markham, K. R., Webby, R. F. and Vilain, C. (1984) *Phytochemistry* **23**, 2049.
16. Lundgren, L. N. and Theander, O. (1988) *Phytochemistry* **27**, 829.
17. Kaouadji, M., Ravanel, P. and Mariotte, A. M. (1986) *J. Nat. Prod.* **49**, 153.
18. Markham, K. R. and Chari, V. M. (1982) in *The Flavonoids: Advances in Research* (Harborne, J. B. and Mabry, T. J., eds), Chap. 2. Chapman & Hall, London.
19. Stothers, J. B. (1972) *Carbon-13 NMR Spectroscopy*, Vol. 24, *Organic Chemistry, A Series of Monographs*. Academic Press, New York.
20. Agrawal, P. K. (1989) *Carbon-13 NMR of Flavonoids*. Elsevier, Amsterdam.
21. Breitmaier, E. and Voelter, W. (1990) *Carbon-13 NMR Spectroscopy*. VCH, Weinheim.
22. Zapesochnaya, G. and Pangarova, T. (1980) *Dolk. Bolg. Akad. Nauk.* **33**, 933.
23. Geiger, H., Schdecker, U., Waldrum, G. V. and Mabry, T. J. (1975) *Z. Naturforsch. Sect. C; Biosci.* **30**, 296.
24. Ogawa, M. and Ogihara, Y. (1975) *Yakugaku Zasshi* **95**, 655.