

ISOQUINOLINE ALKALOIDS FROM *ACANGELISIA GUSANLUNG*

JIN-SHENG ZHANG,* LOUISETTE LE MEN-OLIVIER† and GEORGES MASSIOT†

Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 294 Tai-Yuan Road, Shanghai 200031, P. R. of China;

†Faculte de Pharmacie, URA au CNRS No. 492, 51 rue Cognacq-Jay, 51096 Reims, France

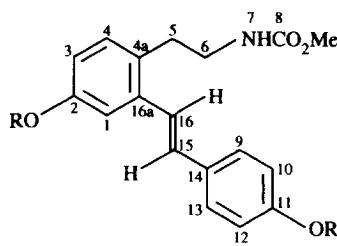
(Received 20 September 1994)

Key Word Index—*Acangelisia gusanlung*; Menispermaceae; 8-oxyprotoberberine alkaloids; gusanlung C, D; 8-oxythalifendine; 8-oxyberberrubine.

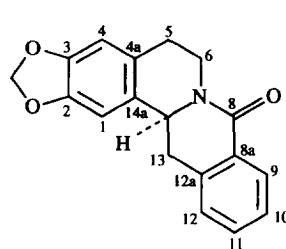
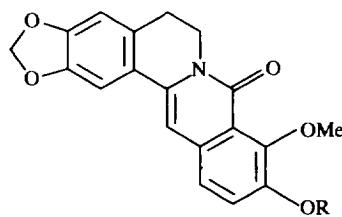
Abstract—Studies on the stem of *Acangelisia gusanlung* yielded four new isoquinoline alkaloids, gusanlung C, D, 8-oxythalifendine and 8-oxyberberrubine together with a known alkaloid, 8-oxyberberine. Their structures were elucidated by spectroscopic analysis of the natural products and of derivatives.

INTRODUCTION

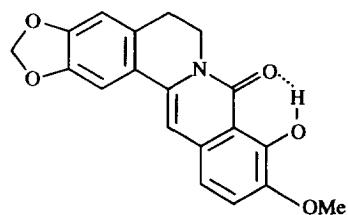
Acangelisia gusanlung H. S. Lo is a small shrub distributed in Hainan Island of southern China and the whole stem is used in folk medicine. Previous phytochemical studies have afforded two new 8-oxotetrahydroprotoberberine alkaloids, gusanlung A and B [1]. As part of our continuing researches on *A. gusanlung*, we discuss here the isolation and structural elucidation of four new compounds, gusanlung C (1), gusanlung D (2), 8-oxythalifendine (4), 8-oxyberberrubine (5) and of the known 8-oxyberberine (3) from the ethylacetate-soluble extract of *A. gusanlung* stem.


RESULTS AND DISCUSSION

Gusanlung C (1), $C_{18}H_{19}NO_4$ (HRMS), was isolated as yellow crystals, mp 104–105°. Its IR spectrum showed phenolic hydroxy (3300 cm^{-1}), amide carbonyl (1640 cm^{-1}), $-\text{NH}-$ (3380 cm^{-1}), double bond (1610 cm^{-1}) and aromatic (1570 , 1500 cm^{-1}) absorption bands. The ^1H NMR spectrum of compound 1 showed a characteristic AA' XX' broadened quartet ($J = 8.0\text{ Hz}$) at $\delta 6.74$ and 7.05 typical for the four protons in a *para*-disubstituted benzene ring, a pair of separated olefinic protons with an AX pattern ($J = 15.5\text{ Hz}$) at $\delta 6.48$ and 7.43 , another AX quartet ($J = 8.4\text{ Hz}$) at $\delta 6.81$ and 7.03 , the latter of which also showed a small *meta*-coupling ($J = 0.5\text{ Hz}$) in a benzene ring, one proton doublet ($J = 0.5\text{ Hz}$) at $\delta 7.14$, coupling with the doublet at $\delta 7.03$, a methoxy signal at $\delta 3.85$, two aliphatic protons as a triplet ($J = 7.2\text{ Hz}$) at $\delta 2.73$ and two additional aliphatic protons as a quartet ($J = 7.2\text{ Hz}$) at $\delta 3.46$ which exhibited coupling with signals at $\delta 8.00$ (1H , t ,



$J = 7.2\text{ Hz}$) due to NH (exchangeable), respectively (Table 1). The absorption at 1640 cm^{-1} suggested that compound 1 contained an amide or urethane carbonyl group and this was supported by the observation of a ^{13}C NMR signal at $\delta_c 167$ (Table 2). Based on the above spectral data, 1 must contain a $\text{CH}_2\text{—CH}_2\text{—NH—CO—OMe}$ moiety. Compound 1 was transformed into acetyl and methyl derivatives (**1a**) and (**1b**) with acetic anhydride–pyridine and diazomethane, respectively. The ^1H NMR (Table 1) spectra showed the presence of two acetyl groups at $\delta 2.28$ (3H , *s*), $\delta 2.30$ (3H , *s*) in **1a** and three methoxy signals at $\delta 3.80$ (3H , *s*), $\delta 3.89$ (6H , *s*) in **1b**, indicating that 1 contained two phenolic hydroxy groups. In order to elucidate the positions of the aromatic substituents, a 2D ^1H – ^1H delayed COSY experiment for **1b** was carried out. In this experiment, the signal at $\delta 2.80$ due to H-5 was correlated with the doublet at $\delta 6.85$ indicating that this signal should be H-4. Since the methoxyl at $\delta 3.89$ and an olefinic proton at $\delta 7.55$ were correlated with the same proton doublet at $\delta 7.00$ due to H-1, the remaining two positions in this benzene ring should be substituted by a methoxy group and a double bond. On biogenetic considerations, the methoxy group and the double bond were located at C-2 and C-16a', respectively. The 15.5 Hz J value between the olefinic protons indicated that they were in a *trans*-arrangement. The two proton doublet at $\delta 6.88$ was assigned to H-10 and H-12, because of long range coupling with the methoxyl at $\delta 3.89$. These analyses suggested the structure as **1**. The ^{13}C NMR spectral data also supported this deduction (Table 2).

Gusanlung D (2), $C_{18}H_{15}NO_3$ (HRMS), $[\alpha]_D^{20} - 345^\circ$ (CHCl_3 ; $c 0.018$), needles, mp 250–251.5°, had UV maxima at 222, 273, 294, 320 nm, similar to those of gusanlung A and B [1] indicating that compound **2** possessed the 8-oxoprotoberberine alkaloid skeleton. The IR spectrum of **2** displayed lactam carbonyl group (1650 cm^{-1}) and


*Author to whom correspondence should be addressed.

1 $R = H$
1a $R = COCH_3$
1b $R = CH_3$

2

3 $R = CH_3$
4a $R = H$
4b $R = COCH_3$

5Table 1. 1H NMR data of compounds **1**, **1a** and **1b** (TMS as internal standard)

H	1 *	1a †	1b ‡
1	7.14 (<i>d</i> , <i>J</i> = 0.5 Hz)	7.04 (<i>d</i> , <i>J</i> = 0.5 Hz)	7.00 (<i>d</i> , <i>J</i> = 0.5 Hz)
3	7.03 (<i>dd</i> , <i>J</i> = 8.4, 0.5 Hz)	7.06 (<i>dd</i> , <i>J</i> = 8.2, 0.5 Hz)	7.07 (<i>dd</i> , <i>J</i> = 8.4, 0.5 Hz)
4	6.81 (<i>d</i> , <i>J</i> = 8.4 Hz)	6.99 (<i>d</i> , <i>J</i> = 8.2 Hz)	6.85 (<i>d</i> , <i>J</i> = 8.4 Hz)
5	2.73 (2H, <i>t</i> , <i>J</i> = 7.2 Hz)	2.85 (2H, <i>t</i> , <i>J</i> = 6.7 Hz)	2.80 (2H, <i>t</i> , <i>J</i> = 7.2 Hz)
6	3.46 (2H, <i>q</i> , <i>J</i> = 7.2 Hz)	3.62 (2H, <i>q</i> , <i>J</i> = 6.7 Hz)	3.14 (2H, <i>q</i> , <i>J</i> = 7.2 Hz)
7	8.00 (1H, <i>t</i> , <i>J</i> = 7.2 Hz)		
9	7.05 (<i>d</i> , <i>J</i> = 8.0 Hz, AA' XX')	7.20 (<i>d</i> , <i>J</i> = 8.2 Hz, AA' XX')	7.14 (<i>d</i> , <i>J</i> = 8.0 Hz, AA' XX')
10	6.74 (<i>d</i> , <i>J</i> = 8.0 Hz, AA' XX')	7.02 (<i>d</i> , <i>J</i> = 8.2 Hz, AA' XX')	6.88 (<i>d</i> , <i>J</i> = 8.0 Hz, AA' XX')
12	6.74 (<i>d</i> , <i>J</i> = 8.0 Hz, AA' XX')	7.02 (<i>d</i> , <i>J</i> = 8.2 Hz, AA' XX')	6.88 (<i>d</i> , <i>J</i> = 8.0 Hz, AA' XX')
13	7.05 (<i>d</i> , <i>J</i> = 8.0 Hz, AA' XX')	7.20 (<i>d</i> , <i>J</i> = 8.2 Hz, AA' XX')	7.14 (<i>d</i> , <i>J</i> = 8.0 Hz, AA' XX')
15	7.43 (<i>d</i> , <i>J</i> = 15.5 Hz, AX)	7.55 (<i>d</i> , <i>J</i> = 15.5 Hz, AX)	7.55 (<i>d</i> , <i>J</i> = 15.5 Hz, AX)
16	6.48 (<i>d</i> , <i>J</i> = 15.5 Hz, AX)	6.26 (<i>d</i> , <i>J</i> = 15.5 Hz, AX)	6.20 (<i>d</i> , <i>J</i> = 15.5 Hz, AX)
COMe	3.85 (s, 3H)	3.82 (s, 3H)	3.80 (s, 3H)
2 × OMe	—	—	3.89 (s, 6H)
2 × OCOMe	—	2.28 (s, 3H), 2.30 (s, 3H)	—

*400 MHz, CD_3COCD_3 .†400 MHz, $CDCl_3$.‡400 MHz, $CDCl_3$.

aromatic (1490, 1600 cm^{-1}) absorption bands. The 1H NMR spectrum of **2** exhibited one methylenedioxy, three groups of seven aliphatic protons as multiplets, three aromatic proton multiplets, two aromatic protons as singlets and one aromatic proton doublet (*J* = 8.0 Hz) at δ 8.07, characteristic of H-9 in this class of alkaloid, which is deshielded by the carbonyl group at C-8 [2]. In the 2D 1H - 1H NMR COSY spectrum of **2**, the signal at

δ 8.07 (H-9) was correlated with the three aromatic proton multiplets indicating that the methylenedioxy group was in ring A and that ring D was not substituted. The ^{13}C NMR spectral data (Table 2) also supported the proposed structure **2**.

8-Oxythalidendine (**4**), light brown needles, mp 286–287°, has the molecular formula $C_{19}H_{15}NO_5$ based on the HR mass spectrum of the monoacetate (**4a**). It

gave a dark brown spot with the Dragendorff spray reagent like all 8-oxyberberine alkaloids [3]. Its IR spectrum displayed absorption of a lactam carbonyl group at 1630 cm^{-1} and a hydroxy group at 3200 cm^{-1} . The ^1H NMR spectrum of **4** (see Table 3) presented the distinctive triplets at $\delta 2.90$ and $\delta 4.30$ (H-5 and H-6) of 8-oxyberberine alkaloids, one methylenedioxy, three aromatic singlets and a two proton AB quartet. The ^1H NMR spectrum of **4** was similar to that of **3** except for one missing methoxy singlet. Acetylation of compound **4** afforded a monacetate **4a** indicating that **4** contained one phenolic hydroxyl group. Because of the facile acetylation of **4**, its structure was deduced to be 8-oxy-*thalifendine*.

8-Oxyberberubine (**5**), also $\text{C}_{19}\text{H}_{15}\text{NO}_5$, was isolated as reddish brown needles, mp $240\text{--}241^\circ$. It displayed a black spot on spraying with Dragendorff reagent like compounds **3** and **4**. Its lactam carbonyl group absorption band in the IR spectrum appeared at 1640 cm^{-1} (δ_c 164). The ^1H NMR spectrum was similar to that of **4**, but the R_f values differed. Compound **4** was easily transformed into its acetate, while compound **5** resisted acylation. Hence, **5** was a positional isomer of **4** in which the phenolic hydroxyl was located at C-9. The existence of a hydrogen bond with the amide carbonyl explains the different polarities of the two compounds, while the steric hindrance of the phenol flanked by two *ortho*-substituents explains the reluctance to acylation.

EXPERIMENTAL

General. Mps: uncorr. UV: MeOH. IR: KBr. ^1H NMR, 300 MHz and ^{13}C NMR, 75 MHz in CDCl_3 with TMS as int. standard. MS: 70 eV direct inlet. Spray reagent for TLC: Dragendorff reagent.

Plant material. *Acangelisia gusanlung* was collected in the Hainan Province of China in November 1987, and authenticated by Professor Y. Zhong. A voucher specimen is deposited in the Herbarium of Shanghai Institute of Materia Medica, Chinese Academy of Sciences.

Extraction and isolation. The dried and ground stems of *A. gusanlung* (20 kg) were refluxed with 95% EtOH. The extract was concd to dryness under red. pres. below 60° . The residue was partitioned between EtOAc and H_2O (1:1). The EtOAc soln was evapd to yield 30 g of residue. The EtOAc extract was chromatographed on a silica gel (200–300 mesh, 1.5 kg) column ($4.5 \times 110\text{ cm}$) eluted with hexane–EtOAc (1:1, 5 l, frs 1–25), followed by EtOAc–EtOH (9:1, 3.2 l, frs 26–42), and finally EtOAc–EtOH (7:3, 3.4 l, frs 43–60). Fractions of 200 ml were collected to afford 60 frs. Fractions 48–58 were purified by PTLC on silica gel GF_{254} using $\text{CHCl}_3\text{--Me}_2\text{CO}$ (82:4) to give **1** (70 mg). Fractions 30–40 (2.09 g) were rechromatographed on a column of silica gel (0.063–0.200 mm, 100 g) eluted with $\text{CHCl}_3\text{--Me}_2\text{CO}$ (41:3, 750 ml) to yield **3** (80 mg) [4] from frs 2–3, and **4** (40 mg) from frs 9–14, respectively.

Table 2. ^{13}C NMR data of compounds **1**–**3** and **5** (75 Hz, CDCl_3)

C	1	2	3	5
1	119.8 (d)	107.3 (d)	104.6 (d)	104.0 (d)
2	156.6 (s)	135.0 (s)	147.3 (s)	141.6 (s)
3	122.6 (d)	147.0 (s)	148.3 (s)	146.4 (s)
4	116.1 (d)	107.5 (d)	107.8 (d)	107.1 (d)
4a	131.0 (s)	126.5 (s)	119.3 (s)	109.6 (s)
5	35.7 (t)	29.7 (t)	28.6 (t)	28.4 (t)
6	41.9 (t)	42.0 (t)	39.2 (t)	39.1 (t)
8	167.0 (s)	162.0 (s)	160.0 (s)	164.0 (s)
8a	—	117.3 (s)	132.3 (s)	129.9 (s)
9	116.0 (d)	128.7 (d)	151.3 (s)	149.0 (s)
10	130.4 (d)	127.9 (d)	149.4 (s)	147.5 (s)
11	149.1 (s)	127.1 (d)	118.8 (d)	114.9 (d)
12	130.4 (d)	126.8 (d)	122.2 (d)	120.0 (d)
12a	—	124.6 (s)	129.9 (s)	128.9 (s)
13	116.0 (d)	33.5 (t)	101.1 (d)	103.6 (d)
14	148.6 (s)	49.4 (d)	135.5 (s)	133.6 (s)
14a	—	126.5 (s)	123.6 (s)	122.1 (s)
15	140.6 (d)			
16	111.6 (d)			
16a	128.2 (s)			
OMe	56.4 (q)		56.8 (q), 61.5 (q)	56.7 (q)
OCH ₂ O		100.9 (t)	101.3 (t)	100.6 (t)

*Interchangeable assignments.

Table 3. ^1H NMR data of compounds **3**, **4**, **4a** and **5** (300 MHz, CDCl_3)

H	3	4	4a	5
1	6.73 (s)	6.74 (s)	6.78 (s)	6.83 (s)
–OCH ₂ O–	6.00 (s, 2H)	6.00 (s, 2H)	6.10 (s, 2H)	6.02 (s, 2H)
4	6.70 (s)	6.72 (s)	6.74 (s)	6.72 (s)
5	2.90 (t, 2H, $J = 7.2\text{ Hz}$)	2.90 (t, 2H, $J = 7.2\text{ Hz}$)	2.90 (t, 2H, $J = 7.2\text{ Hz}$)	2.91 (t, 2H, $J = 7.2\text{ Hz}$)
6	4.30 (t, 2H, $J = 7.2\text{ Hz}$)	4.30 (t, 2H, $J = 7.2\text{ Hz}$)	4.30 (t, 2H, $J = 7.2\text{ Hz}$)	4.27 (t, 2H, $J = 7.2\text{ Hz}$)
C ₉ -OMe	4.00 (s, 3H)	4.04 (s, 3H)	3.96 (s, 3H)	—
C ₁₀ -OMe	3.94 (s, 3H)	—	—	3.96 (s, 3H)
11	7.33 ($J = 7.4\text{ Hz}$, ABq)	7.33 ($J = 7.0\text{ Hz}$, ABq)	7.32 ($J = 7.0\text{ Hz}$, ABq)	7.30 ($J = 8.0\text{ Hz}$, ABq)
12	7.28 ($J = 7.4\text{ Hz}$, ABq)	7.24 ($J = 7.0\text{ Hz}$, ABq)	7.26 ($J = 7.0\text{ Hz}$, ABq)	7.00 ($J = 8.0\text{ Hz}$, ABq)
13	7.22 (s)	7.20 (s)	7.27 (s)	7.21 (s)
OCOMe	—	—	2.37 (s, 3H)	—

Fractions 7–18 (2.1 g) were rechromatographed on a column of silica gel (0.063–0.200 mm, 100 g) eluted with a mixture of CHCl_3 –cyclohexane (8:2, 900 ml) to give a green residue which was subjected to PTLC on silica gel GF₂₅₄ using CHCl_3 – Me_2CO (84:4) to yield **5** (R_f 0.79, 35 mg). Fractions 19–27 were purified by PTLC on silica gel GF₂₅₄ using CHCl_3 – MeOH (85:1) to yield **2** (R_f 0.67, 32 mg).

Gusanlung C (1). Yellow needles, mp 104–105°. UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm: 221, 293, 319. IR $\nu_{\text{max}}^{\text{KBr}}$ cm^{-1} : 3380, 3300, 1640, 1630, 1610, 1580, 1570, 1500, 1440, 1420, 1355, 1260, 1200, 1150, 1115, 1020, 950, 810. ^1H NMR: see Table 1. ^{13}C NMR: see Table 2. EIMS m/z : 313 [M]⁺, 193, 177, 149, 145, 120; HRMS m/z : 313.1301 [M]⁺ (calcd for $\text{C}_{18}\text{H}_{19}\text{NO}_4$ 313.1313).

Acetylation of compound 1. Compound **1** (15 mg) was treated with acetic anhydride (1 ml) and pyridine (6 drops) at room temp. overnight. The reaction mixt. was treated in the usual manner to yield acetyl gusanlung C (**1a**) (8 mg), mp 155–156°. EIMS m/z : 397 [M]⁺, 355, 235, 219, 218, 214, 193, 192, 177, 162, 147, 145, 120. ^1H NMR: see Table 1.

Methylation of compound 1. To 40 mg of compound **1** was added a soln of CH_2N_2 in Et_2O at 0° overnight. The solvent was removed *in vacuo* to yield an oily residue. The residue was subjected to PTLC on silica gel GF₂₅₄ with CHCl_3 – Me_2CO (90:5) to afford **1b** (12 mg). Recrystallization of the crude **1b** from MeOH led to pure trimethyl gusanlung C (**1b**), fine needles, mp 126–127°. ^1H NMR: see Table 1. EIMS m/z : 341 [M]⁺, 222, 207, 206, 191, 163, 134, 121, 97, 83, 69, 57.

Gusanlung D (2). Needles, mp 250–251°. $[\alpha]_D^{20}$ –345°, (CHCl_3 ; c 0.018); UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm: 222, 273, 294, 320; IR $\nu_{\text{max}}^{\text{KBr}}$ cm^{-1} : 1650, 1620, 1600, 1485, 1450, 1425, 1405, 1390, 1280, 1254, 1205, 1145, 1075, 1040, 975, 935, 910, 850, 775. ^1H NMR: (CDCl_3): δ 2.70–3.40 (5H, *m*), 3.95 (1H, *m*, H-

14), 4.80 (1H, *m*, H-6), 6.80 (1H, *s*, H-4), 7.35 (1H, *s*, H-1), 7.29–7.41 (3H, *m*), 8.07 (1H, *d*, *J* = 8.0 Hz, H-9), 6.20, 6.06 (2H, 2 *s*, OCH_2O). ^{13}C NMR: see Table 2. EIMS m/z : 293 [M]⁺, 248, 235, 204, 178, 165, 152. HRMS m/z : 293.1017 [M]⁺ (calcd for $\text{C}_{18}\text{H}_{15}\text{NO}_3$ 293.1047).

8-Oxythalifendine (4). Brown needles, mp 286–287°. UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm: 224, 340, 369, 191. IR $\nu_{\text{max}}^{\text{CHCl}_3}$ cm^{-1} : 3200, 1630, 1600, 1590, 1510, 1490, 1440, 1310, 1270, 1240, 1040, 940, 860. ^1H NMR: see Table 3. EIMS m/z : 337 [M]⁺ (base peak), 322, 319, 294, 192, 164, 162, 134, 107.

Acetylation of 4. Compound **4** (30 mg) was treated with acetic anhydride (1.5 ml) and pyridine (12 drops) at room temp. for 2 days. The reaction mixt. was treated in the usual manner to afford acetyl 8-oxythalifendine (**4a**) (11 mg), mp 199–200°. ^1H NMR: see Table 3. EIMS m/z : 379 [M]⁺, 351 [M – CO]⁺, 337 [M – Ac]⁺, 322, 319, 294, 292, 191, 190, 178. HRMS m/z : 379.1027 [M]⁺ (calcd for $\text{C}_{21}\text{H}_{17}\text{NO}_6$ 379.1050).

8-Oxyberberrubine (5). Reddish brown rods, mp 240–241°. UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm: 224, 343, 371, 391; IR $\nu_{\text{max}}^{\text{CHCl}_3}$ cm^{-1} : 1640, 1600, 1515, 1490, 1455, 1390, 1320, 1270, 1230, 1180, 1090, 1035, 930, 830. ^1H NMR: see Table 3; ^{13}C NMR: see Table 2; EIMS m/z : 337 [M]⁺ 322, 294, 291, 263, 262, 202, 176; HRMS m/z : 337.0947 [M]⁺ (calcd for $\text{C}_{19}\text{H}_{15}\text{NO}_5$ 337.0945).

REFERENCES

1. Zhang, J. S. and Chen, Z. L. (1991) *Planta Med.* **57**, 457.
2. Marsten, R. and Maclean, B. D. (1984) *Can. J. Chem.* **62**, 1392.
3. Shamma, M., Hillman, M. J. and Jones, C. D. (1969) *Chem. Rev.* **69**, 779.
4. Miana, G. A. (1973) *Phytochemistry* **12**, 1822.