

CLERODANE DITERPENOIDS FROM *CYATHOCALYX ZEYLANICA*

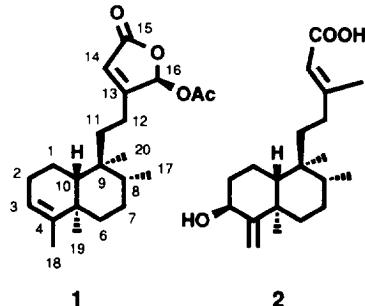
E. M. KITHSIRI WIJERATHNE,* LESLIE B. DE SILVA, YASUHIRO TEZUKA*† and TOHRU KIKUCHI†

Division of Natural Products Chemistry, Medical Research Institute, P.O. Box 527, Colombo 08, Sri Lanka; †Research Institute for Wakan-Yaku (Traditional Sino-Japanese Medicines), Toyama Medical and Pharmaceutical University, Sugitani 2630, Toyama 930-01, Japan

(Received 18 October 1994)

Key Word Index—*Cyathocalyx zeylanica*; Annonaceae; clerodane diterpenoids; 16-acetoxy-cleroda-3,13-dien-15,16-olide; 3-hydroxy-cleroda-4(18),13Z-dien-15-oic acid.

Abstract—A new clerodane diterpene, 3-hydroxy-cleroda-4(18),13Z-dien-15-oic acid, has been isolated from the stem bark of *Cyathocalyx zeylanica* along with a known clerodane diterpenoid, 16-acetoxy-cleroda-3,13-dien-15,16-olide. Their structures were determined on the basis of spectral data including 2D NMR spectra and some previous ¹³C NMR assignments of the latter compound were revised.


INTRODUCTION

Cyathocalyx zeylanica champ. is a pioneer wet zone tree growing in Sri Lanka and southern Deccan Peninsula [1]. In our previous paper, we reported on the isolation and structure elucidation of a new azafuorenone alkaloid from this species [2]. In a continuation of our studies on the isolation of biologically active constituents from Annonaceae plants in Sri Lanka, the hot methanol extract of the stem bark of *C. zeylanica* was shown to be toxic towards larvae of the crustacean *Artemia salina* (brine shrimp) and of the mosquito *Aedes aegypti*. This paper reports on the isolation and characterization of two clerodane diterpenoids (**1** and **2**), one (**2**) of which is new.

RESULTS AND DISCUSSION

Compound **1** was isolated as an acetate and determined to be an *ent*-type clerodane diterpenoid, 16-acetoxy-cleroda-3,13-dien-15,16-olide. Previously, both (16*S*) and (16*R*) compounds were reported from *Polyalthia longifolia* [3] and *P. viridis* [4], respectively. By comparing the ¹H and ¹³C NMR data of **1** with those in the literature, **1** was determined to be the (16*R*) isomer. However, our 2D NMR (COSY, HETCOR, and long-range ¹H-¹³C COSY) data suggested that the previous assignments of some ¹³C NMR signals [4] should be revised. The revised assignments are presented in Table 1.

Compound **2** was obtained as an amorphous solid, and on acetylation (Ac₂O-pyridine), it gave a mono acetate (δ_H 2.12). The mass spectrum of **2** showed a molecular ion at *m/z* 320, which on high-resolution MS measurement

corresponded to the formula C₂₀H₃₂O₃. The IR spectrum of **2** showed the presence of hydroxyl group (3255 cm⁻¹) and an α,β -unsaturated carboxyl group (1692, 1634 cm⁻¹).

Examination of the ¹H NMR spectrum of **2** indicated the presence of two tertiary methyls (δ 0.70 H₃-20; δ 1.06, H₃-19), a secondary methyl (δ 0.77, *J* = 6.5 Hz, H₃-17), and a vinyl methyl (δ 2.36, *d*, *J* = 12 Hz, H₃-16) coupled with the olefinic proton at δ 6.09 (*q*, *J* = 1.2 Hz, H-14). The ¹H NMR spectrum of **2** in deuterated pyridine also showed signals due to a proton attached to a hydroxy-bearing carbon (δ 4.58, *m*, H-3) and an *exo*-olefin (δ 4.95, *t*, *J* = 1.5 Hz and 5.63, *t*, *J* = 1.8 Hz, H₂-18). These data and the results of COSY and HETCOR experiments suggested the presence of the following connectivities: C(10)H-C(1)H₂-C(2)H₂-C(3)H-OH, C(19)H₃-C(5)-C(6)H₂-C(7)H₂-C(8)H-C(17)H₃, C(11)H₂-C(12)H₂, and C(16)H₃-C(13)=C(14)H-C(15)(=O)-OH. The partial structures were connected by the long-range correlations observed in the long-range ¹H-¹³C COSY spectrum (Table 1).

*Author to whom correspondence should be addressed.

Table 1. ^1H (400 MHz) and ^{13}C (100 MHz) NMR data for compounds **1** and **2**

C	1 (in CDCl_3) ^a			2 (in pyridine- d_5) ^b		
	δ_{H}	δ_{C}	$^{1\text{H}}$ L.r. coupled ^a	δ_{H}	δ_{C}	$^{1\text{H}}$ L.r. coupled ^a
1	1.48 <i>m</i> (2H)	18.3 ^b <i>t</i>	3, 10	1.56 <i>m</i> 1.63 <i>m</i>	21.0 <i>t</i>	10
2	1.95 ^c <i>m</i> 2.07 ^d <i>brd</i> (15)	26.8 ^b <i>t</i>	3, 10	1.58 <i>m</i> 2.40 <i>m</i>	38.3 <i>t</i>	
3	5.13 ^e <i>brs</i>	120.3 <i>d</i>	18	4.58 <i>m</i>	68.9 <i>d</i>	
4		144.3 <i>s</i>	18, 19		163.7 <i>s</i>	19
5		38.2 ^b <i>s</i>	1, 3, 6, 10, 18, 19		40.4 <i>s</i>	18, 19
6	1.18 ^f <i>td</i> (12.5, 6) 1.73 <i>dt</i> (12.5, 3)	36.7 <i>t</i>	19	1.66 ^g <i>m</i> (2H)	38.0 <i>t</i>	19
7	1.45 <i>m</i> (2H)	27.3 <i>t</i>	6, 17	1.42 <i>m</i> 1.47 <i>m</i>	27.6 <i>t</i>	17
8	1.45 <i>m</i>	36.4 <i>d</i>	6, 11, 17, 20	1.41 <i>m</i>	36.8 <i>d</i>	12, 17, 20
9		38.7 ^b <i>s</i>	1, 11, 10, 17, 20		39.5 <i>s</i>	8, 17, 20
10	1.30 ^h <i>dd</i> (10, 4)	46.5 <i>d</i>	2, 6, 8, 11, 19, 20	1.20 <i>dd</i> (11, 2)	48.8 <i>d</i>	11, 19, 20
11	1.53 <i>ddd</i> (14.5, 13, 4) 1.64 <i>ddd</i> (14.5, 13, 5)	35.0 <i>t</i>	12, 20	1.36 <i>td</i> (13, 4.5)	36.7 <i>t</i>	12, 20
12	2.09 ⁱ <i>dddd</i> (16, 13, 5, 1) 2.29 <i>dddd</i> (16, 13, 4, 1)	21.1 <i>t</i>	11	1.86 <i>td</i> (13, 5) 1.97 <i>td</i> (13, 4.5)	34.5 <i>t</i>	11, 14, 16
13		167.9 ^b <i>s</i>	12, 14		159.5 <i>s</i>	12, 16
14	5.94 ^{i,j} <i>q</i> (1)	118.1 <i>s</i>		6.09 ^k <i>q</i> (1.2)	117.4 <i>d</i>	12, 16
15		169.8 <i>s</i>	14, 16		169.2 <i>s</i>	
16	6.84 ^j <i>s</i>	93.8 <i>d</i>	14	2.36 ^k <i>d</i> (1.2)	19.0 <i>q</i>	14
17	0.82 <i>d</i> (6.5)	16.0 <i>q</i>		0.77 <i>d</i> (6.5)	16.0 <i>q</i>	
18	1.59 ^{c,d,e} <i>dt</i> (2, 1.5)	17.9 <i>q</i>	3	4.95 <i>t</i> (1.5) 5.63 <i>t</i> (1.8)	100.1 <i>t</i>	
19	1.01 ^f <i>s</i>	19.9 <i>q</i>	6, 10	1.06 ^g <i>s</i>	21.6 <i>q</i>	6, 10
20	0.77 ^h <i>s</i>	18.2 <i>q</i>	10	0.70 <i>s</i>	18.2 <i>q</i>	10
<u>COMe</u>	2.18 <i>s</i>	20.6 <i>q</i>				
<u>COMe</u>		169.0 <i>s</i>	16, <u>COMe</u>			

^a Long-range coupled protons observed in the long-range ^1H - ^{13}C COSY spectrum.^b Previous assignments [4] were revised.^{c-k} Long-range couplings were observed between each other, respectively, in the ^1H - ^1H COSY spectrum.

The relative stereochemistry of **2** was elucidated by the use of difference NOE spectra. Irradiation of $\text{H}_{3\text{-}20}$ (δ 0.70) increased the intensities of the methyl protons at δ 1.06 ($\text{H}_{3\text{-}19}$) and at δ 0.77 ($\text{H}_{3\text{-}17}$), while irradiation of $\text{H}_{3\text{-}19}$ caused NOE increases of $\text{H}_{3\text{-}20}$ and H_{-3} (δ 4.58). Thus three methyl groups ($\text{H}_{3\text{-}17}$, $\text{H}_{3\text{-}19}$, and $\text{H}_{3\text{-}20}$) and H_{-3} have *cis* relations. On the other hand, irradiation of H_{-10} (δ 1.20) and H_{-14} (δ 6.09) both caused NOE increases of both protons at C-12. Thus the side chain at C-9 and H_{-10} are *cis* ($\text{H}_{3\text{-}20}$ and H_{-10} are *trans*) and the configuration of the 13,14-double bond is *Z*. From these data, **2** was concluded to be 3-hydroxy-cleroda-4(18),13*Z*-dien-15-oic acid.

EXPERIMENTAL

General. Mp: uncorr.; Optical rotations: 26°; IR: KBr; ^1H and ^{13}C NMR: 400 and 100 MHz, respectively, with

TMS as int. standard; EIMS and HRMS: 70 eV. Plant material was collected at Kanneliya in the Southern province of Sri Lanka.

Extraction and fractionation. Dried and powdered stem bark of *C. zeylanica* (3.5 kg) was exhaustively extracted with hot MeOH. The MeOH extract was concd and the residue was partitioned between CH_2Cl_2 and H_2O . After concentration, the CH_2Cl_2 -soluble fraction was partitioned between hexane and a 10% aq. MeOH to yield a hexane extract and a 10% aq. MeOH extract (70 g). A part of the 10% aq. MeOH extract (50 g) was chromatographed over silica gel (mesh 70-230, 700 g) with CH_2Cl_2 containing increasing amounts of MeOH.

The fraction (750 mg) eluted with 1% MeOH in CH_2Cl_2 , on acetylation ($\text{Ac}_2\text{O}-\text{C}_5\text{H}_5\text{N}$), gave **1** (560 mg) as needles after recrystallization from MeOH, mp 174–176° $[\alpha]_D = 24.6^\circ$ (MeOH; c 0.082); ^1H and ^{13}C NMR: Table 1.

The fraction (600 mg) eluted with 5% MeOH in CH_2Cl_2 was subjected to MPLC over silica gel (G60, 30% EtOAc in hexane) to give **2** (43 mg) as an amorphous solid, $[\alpha]_D = 57.6^\circ$ (MeOH; c 0.04); HRMS $[\text{M}]^+$

320.2370, $\text{C}_{20}\text{H}_{32}\text{O}_3$ requires m/z 320.2352; EIMS m/z (rel. int.): 320 $[\text{M}]^+$ (3), 302 (100), 287 (21), 207 (27), 189 (82); IR ν_{max} cm^{-1} : 3255, 1692, 1634, 1423, 1251, 1180, 1059, 916; ^1H and ^{13}C NMR: Table 1.

Acknowledgement—The authors wish to thank Japan International Cooperation Agency (JICA) for financial assistance.

REFERENCES

1. Huber, H. (1985) in *Flora of Ceylon* (Dassanayaka, M. D. and Fosberg, F. R., eds), Vol. V, pp. 54. Amerid Publishing, New Delhi.
2. Wijerathne, E. M. K., de Silva, E. M., Kikuchi, T., Tezuka, Y., Gunatilaka, A. A. L. and Kingston, D. G. I. (1995) *J. Nat. Prod.* (submitted).
3. Phadnis, A. P., Patwardhan, S. A., Dhaneshwar, N. N., Tavale, S. S. and Row, T. N. G. (1988) *Phytochemistry* **27**, 2899.
4. Kijjoa, A., Pinto, M. M. M. and Herz, W. (1989) *Planta Med.* **55**, 205.