

CYCLOBARTRAMIATRILUTEOLIN, A UNIQUE TRIFLAVONOID FROM *BARTRAMIA STRICTA**[†]

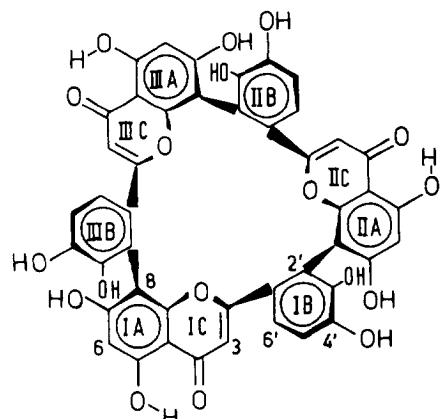
HANS GEIGER, ARIANE VOIGT, TASSILO SEEGER, HANS-DIETMAR ZINSMEISTER,[†] JOSÉ-ANTONIO LÓPEZ-SÁEZ,[‡] M. -JOSÉ PÉREZ-ALONSO[‡] and ARTÚRO VELASCO-NEGERÚELA[‡]

FR Botanik der Universität des Saarlandes, Postfach 151150, D-66041 Saarbrücken, Germany; [‡]Departamento de Biología Vegetal I, Universidad Complutense, Ciudad Universitaria, 28040 Madrid, Spain

(Received 25 July 1994)

Key Word Index—*Bartramia stricta*; Bartramiaceae; musci; cyclobartramiatriluteolin; bartramiatriluteolin; philonotisflavone; dicranolomin; 5',3'''-dihydroxyamentoflavone; 5',3'''-dihydroxyrobustaflavone.

Abstract—Cyclobartramiatriluteolin, a new triflavone in which three head-to-tail linked luteolin moieties form an 18-membered macrocycle, has been isolated from *Bartramia stricta*. Its structure was elucidated spectroscopically. In addition, five known bi- and triflavonoids have been isolated and identified.


INTRODUCTION

During a chemosystematic survey of the moss family Bartramiaceae [1] it was realized, that *Bartramia stricta* contains some hitherto unknown flavonoids. This prompted us to study this species in detail. Separation of an aqueous acetone extract from *B. stricta* as described in the Experimental yielded the new cyclobartramiatriluteolin (**1**), and a mixture of at least three other new triflavonoids, that is still under investigation. Furthermore, the known flavonoids bartramiatriluteolin (**2**), philonotisflavone (**3**), dicranolomin (**4**), 5',3'''-dihydroxyamentoflavone (**5**) and 5',3'''-dihydroxyrobustaflavone (**6**) were isolated and identified by their NMR spectra [2, 3] and co-chromatography with authentic material from *B. pomiformis* [2] and *Hylocomium splendens* [4].

RESULTS

The main subject of the present communication is the elucidation of the structure of **1**. The ¹³C NMR spectrum exhibited only 15 signals, the chemical shifts of which are very close to those observed in the spectrum of anhydrobartramiavone (**7**) (Table 1, [5]). Compound **7** is a cyclobiluteolin, that has a two-fold axis of symmetry and shows, therefore, only 15 instead of 30 ¹³C resonances. The *M*_r of **1** and **7** were, however, different: *M*_r of **7**, 568 (= 2 × 284) and *M*_r of **1**, 852 (= 3 × 284). Thus, **1** must be a cyclo-triluteolin having a three-fold axis of symmetry.

The location of the interflavonyl linkages of **1** follows, as with **7**, from a comparison of its NMR spectra with those of its monomer, luteolin (**8**) (see Table 1): an uncoupled proton signal at δ6.32 correlated with the C-6 signal at δ98.0 and a downfield shift of the C-8 resonance by 9 ppm relative to **8** define C-8 as one bridgehead. The other bridgehead was shown to be C-2' by the *ortho* coupled H-5' and H-6' signals and a downfield shift of the C-2' resonance relative to **8**. The only way in which the three luteolin units can be united via their C-8 and C-2' to a symmetrical molecule is by a 8 → 2' linkage; all other combinations do not lead to a molecule with a three-fold axis of symmetry. Formula 1 shows this rather unusual molecule in top view. In side view its overall shape is reminiscent of an hour glass: at the top the B-rings are

*This publication is No. 84 of the Arbeitskreis Chemie und Biologie der Moose.

[†]Author to whom correspondence should be addressed.

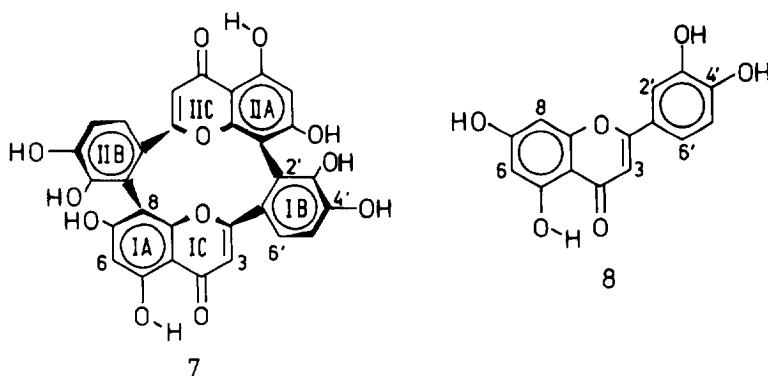


Table 1. ^{13}C and ^1H NMR spectral data of compound **1** and two related compounds in $\text{DMSO}-d_6$ at ambient temp. with 100 and 400 MHz, respectively, because of symmetry assignments for **1** and **7** are given only for one of the moieties

Position	1*		7* [3, 5]		8 [5]	
	C	H	C	H	C	H
2	164.8	—	167.1	—	164.5	—
3	106.7	5.93 s	108.9	5.74 s	103.3	6.69 s
4	181.1	—	181.6	—	182.2	—
5	160.4	—	160.4	—	162.1	—
6	98.0	6.32 s	98.6	6.26 s	99.2	6.22 d ^m
7	162.4	—	163.4	—	164.7	—
8	103.3	—	103.1	—	94.2	6.47 d ^m
9	154.6	—	154.6	—	157.9	—
10	102.8	—	102.7	—	104.2	—
1'	124.9	—	125.5	—	122.1	—
2'	118.6	—	119.1	—	113.8	7.43 d ^m
3'	144.2	—	144.4	—	146.2	—
4'	147.6	—	147.0	—	150.1	—
5'	114.6	6.69 d ^o	113.9	6.80 d ^o	116.4	6.92 d ^o
6'	118.9	6.34 d ^o	118.7	6.73 d ^o	119.3	7.44 dd ^{om}

* ^{13}C and ^1H signals correlated by the 'inverse' technique.

slanting somewhat outward and at the base the A- and C-rings do the same.

In accordance with this structure also are the chemical shifts of the H-3,5' and 6' signals of **1**. These signals are observed at much higher field than the corresponding signals of luteolin (**8**) because these protons are situated within the shielding zones of the neighbouring luteolin moieties. Similar effects are also observed with anhydrobartramiaflavone (**7**) [3].

EXPERIMENTAL

Bartramia stricta Brid., gametophytes containing a few sporophytes, was collected and identified by J.A.L.-S. at Villa del prado near Madrid. A voucher is deposited at MACB (J.A. Lopez-Saez, 22 December 1992).

Extraction and CC on polyamide 6 with a H_2O – Me_2CO gradient were performed as described earlier [6]. The sequence of elution from the polyamide column was **3**, **1**, **4**, **2**, a mixture of further triluteolins, **5**, and **6**. Since there

was considerable overlapping, mixed fractions were further separated by CC on Sephadex LH20 with the eluents Me_2CO – MeOH – H_2O (2:1:1) and MeOH – H_2O (4:1). With these systems the order of elution was **1** + **2** + other triluteolins, **3**, **4**, **5**, **6** and **2**, **3**, **4**, **1**, respectively. From 200 g air-dried *B. stricta* were isolated by a combination of these methods 70 mg **1**, 20 mg **2**, 21 mg **3**, 9 mg **4**, 26 mg **5**, 5 mg **6**, and about 100 mg of a mixture of several triluteolins, that is still under investigation. The M_r of **1** was determined by laser induced microprobe mass analysis (LAMMA) using nicotinic acid amide as matrix.

Acknowledgements—We are indebted to Prof. P. H. Wieser (University Hohenheim) for the LAMMA spectrum, Dr G. Schilling (University Heidelberg) for the 'inverse' C–H correlation and Dr M. Jung for the other NMR spectra. We thank Mrs M. Schäfer for writing the manuscript. Financial support of BASF, Experimental Station, Limburger Hof, is gratefully acknowledged.

REFERENCES

1. Seeger, T. (1992) Dissertation. Saarbrücken.
2. Seeger, T., Geiger, H. and Zinsmeister, H.-D. (1992) *Z. Naturforsch.* **47c**, 527.
3. Geiger, H., Seeger, T., Hahn, H., Zinsmeister, H.-D., Markham, K. R. and Wong, H. (1993) *Z. Naturforsch.* **48c**, 821.
4. Becker, R., Mues, R., Zinsmeister, H.-D., Herzog, F. and Geiger, H. (1986) *Z. Naturforsch.* **41c**, 507.
5. Seeger, T., Geiger, H. and Zinsmeister, H.-D. (1991) *Phytochemistry* **30**, 1653.
6. Seeger, T., Geiger, H., Mues, R. and Zinsmeister, H.-D. (1993) *Z. Naturforsch.* **48c**, 529.