

PHENYLPROPANOIDS FROM *ARALIA BIPINNATA*

JEH-JIAN HSIAO and HUNG-CHEH CHIANG*

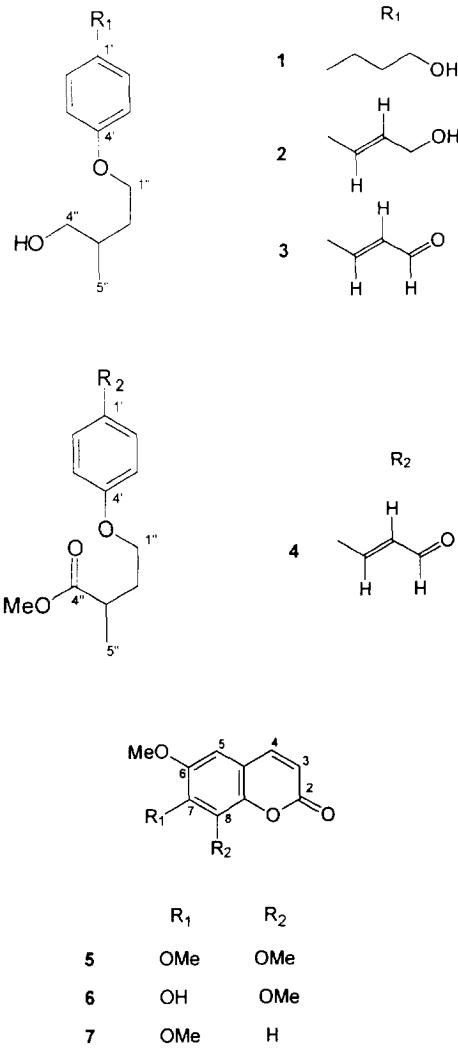
Institute of Chemistry, National Taiwan Normal University, Taipei 117, Taiwan, R.O.C.

(Received in revised form 31 October 1994)

Key Word Index—*Aralia bipinnata*; Araliaceae; (−)-4'-(4"-hydroxy-3"-methylbutyloxy)-3-phenylpropenol; (+)-4'-(4"-hydroxy-3"-methylbutyloxy)-3-phenylpropenal; (+)-4'-(4"-methoxy-3"-methyl-4"-oxobutyloxy)-3-phenylpropenal; coumarins.

Abstract—Three new compounds, (−)-4'-(4"-hydroxy-3"-methylbutyloxy)-3-phenylpropenol, (+)-4'-(4"-hydroxy-3"-methylbutyloxy)-3-phenylpropenal and (+)-4'-(4"-methoxy-3"-methyl-4"-oxobutyloxy)-3-phenylpropenal were isolated, together with (−)-4'-(4"-hydroxy-3"-methylbutyloxy)-3-phenylpropanol, isofraxidin, scoparone and 6,7,8-trimethoxycoumarin, from the woody parts of *Aralia bipinnata*.

INTRODUCTION


Aralia bipinnata is a small deciduous tree that grows in deforested and sunny areas in Taiwan [1]. In previous work we reported the isolation of nine known compounds by silica gel column chromatography [2]. In this report, the constituents of the woody parts of *Aralia bipinnata* were separated by semi-preparative HPLC. We have isolated and identified three coumarins and four phenylpropanoids, three of which, (−)-4'-(4"-hydroxy-3"-methylbutyloxy)-3-phenylpropenol (2), (+)-4'-(4"-hydroxy-3"-methylbutyloxy)-3-phenylpropenal (3) and (+)-4'-(4"-methoxy-3"-methyl-4"-oxobutyloxy)-3-phenylpropenal (4) are new compounds.

RESULTS AND DISCUSSION

Compound 1 was fully characterized as (−)-4'-(4"-hydroxy-3"-methylbutyloxy)-3-phenylpropanol [3] by comparison of spectral properties (mass spectrum, UV, IR, ¹H NMR) with those of an authentic sample.

The UV and IR spectra of 2–4 indicated these compounds to be aromatic in nature. Their ¹H NMR spectra showed AB doublets with *J* = 8.8 Hz in the aromatic region suggesting the presence of a 1,4-disubstituted benzene ring. In the ¹H NMR spectrum of 2 and 3, the presence of a (4"-hydroxy-3"-methylbutyloxy)phenyl moiety was confirmed by comparison with that of compound 1.

The remaining signals in the ¹H NMR spectrum of 2, consisted of two doublets and one double triplet suggesting the presence of a —CH=CH—CH₂OH (*E*-form) side-chain. NOEs were observed between H-3', 5'/H-1"

*Author to whom correspondence should be addressed.

Table 1. ^1H NMR data for compounds **24** (400 MHz, CDCl_3 , TMS as int. standard, coupling constants (J) in Hz)

Proton	2	3	4
H-1	4.31, <i>d</i> , $J = 5.8$	9.65, <i>d</i> , $J = 7.8$	9.65, <i>d</i> , $J = 7.8$
H-2	6.25, <i>dt</i> , $J = 15.6, 5.8$	6.61, <i>dd</i> , $J = 16.1, 7.8$	6.60, <i>dd</i> , $J = 15.6, 7.8$
H-3	6.56, <i>d</i> , $J = 15.6$	7.41, <i>d</i> , $J = 16.1$	7.41, <i>d</i> , $J = 15.6$
H-2',6'	7.33, <i>d</i> , $J = 8.8$	7.51, <i>d</i> , $J = 8.8$	7.50, <i>d</i> , $J = 8.8$
H-3',5'	6.86, <i>d</i> , $J = 8.8$	6.93, <i>d</i> , $J = 8.8$	6.91, <i>d</i> , $J = 8.8$
H-1''	4.08, <i>m</i>	4.11, <i>m</i>	4.05, <i>m</i>
H-2''	1.72, 1.95, <i>m</i>	1.72, 1.95, <i>m</i>	1.91, 2.19, <i>m</i>
H-3''	1.92, <i>m</i>	1.92, <i>m</i>	2.74, <i>m</i>
H-4''	3.57, <i>d</i> , $J = 5.4$	3.65, <i>d</i> , $J = 5.3$	—
H-5''	1.01, <i>d</i> , $J = 6.8$	1.01, <i>d</i> , $J = 6.8$	1.25, <i>d</i> , $J = 6.8$
-OMe	—	—	3.69, <i>s</i>

and H-2', 6'/H-3. The proposed gross structure was unambiguously confirmed by ^1H - ^1H COSY and ^{13}C - ^1H COSY experiments. From the above data, **2** was characterized as (–)-4'-(4"-hydroxy-3"-methylbutyloxy)-3-phenylpropenol.

The remaining signals in the ^1H NMR spectrum of **3**, consisted of two doublets and one doublet suggesting the presence of a $-\text{CH}=\text{CH}-\text{CHO}$ (*E*-form) side-chain; NOEs were observed between H-3', 5'/H-1'' and H-2', 6'/H-3. From the above data, **3** was characterized as (+)-4'-(4"-hydroxy-3"-methylbutyloxy)-3-phenylpropenal.

In the ^1H NMR spectrum of **4**, a singlet at δ 3.69 (Me) coupled with a quartet at δ 176.5 in the ^{13}C NMR and absorption in the IR spectrum at 1732 cm^{-1} , indicated the presence of a methoxy carbonyl moiety. Comparison of the ^1H NMR spectrum of **4** with that of **3** revealed that the signal assignable to H-3'' was shifted by + 0.82 ppm, suggesting the location of the methoxy carbonyl moiety on the C-3'' of **3**. NOEs were observed between H-3', 5'/H-1'' and H-2', 6'/H-3. From the above data, **4** was characterized as (+)-4-(4"-methoxy-3"-methyl-4"-oxo-butyloxy)-3-phenylpropenal.

Compounds **5**–**7** were identified as 6,7,8-trimethoxycoumarin [4, 5], isofraxidin [6, 7] and scoparone [5], by comparison of spectral properties with those of authentic samples.

EXPERIMENTAL

General. Mps: uncorr. NMR: 400 MHz, CDCl_3 , TMS as int. standard. MS: 70 eV. IR: KBr. HPLC was performed on Si 60 (Waters, 6 μm , $7.8 \times 300\text{ nm}$) column using EtOAc-hexane and EtOAc- CHCl_3 as solvent systems and employing a RI detector.

Extraction and separation. Woody parts of *A. bipinnata* (3 kg) were extracted with MeOH ($10\text{ l} \times 3$). The extracts were passed through a short column of activated charcoal. The filtrate was concd and the residue (31.5 g) coated on to silica gel (50 g) and subjected to chromatography on a silica gel (500 g) column by elution with

Table 2. ^{13}C NMR data for compounds **1**–**4** (100 MHz, CDCl_3 , TMS as int. standard)

Carbon	1	2	3	4
C-1	61.9 <i>t</i>	63.6 <i>t</i>	193.6 <i>d</i>	193.6 <i>d</i>
C-2	34.2 <i>t</i>	126.3 <i>d</i>	126.5 <i>d</i>	126.5 <i>d</i>
C-3	29.6 <i>t</i>	130.7 <i>d</i>	152.6 <i>d</i>	152.6 <i>d</i>
C-1'	133.9 <i>s</i>	129.5 <i>s</i>	126.8 <i>s</i>	126.8 <i>s</i>
C-2'	129.2 <i>d</i>	127.6 <i>d</i>	130.3 <i>d</i>	130.3 <i>d</i>
C-3'	114.5 <i>d</i>	114.5 <i>d</i>	115.0 <i>d</i>	115.0 <i>d</i>
C-4'	156.8 <i>s</i>	158.4 <i>s</i>	161.5 <i>s</i>	161.4 <i>s</i>
C-5'	114.5 <i>d</i>	114.5 <i>d</i>	115.0 <i>d</i>	115.0 <i>d</i>
C-6'	129.2 <i>d</i>	127.6 <i>d</i>	130.3 <i>d</i>	130.3 <i>d</i>
C-1''	66.1 <i>t</i>	66.2 <i>t</i>	66.4 <i>t</i>	65.8 <i>t</i>
C-2''	32.8 <i>t</i>	32.7 <i>t</i>	32.6 <i>t</i>	32.8 <i>t</i>
C-3''	33.1 <i>d</i>	33.1 <i>d</i>	33.1 <i>d</i>	36.3 <i>d</i>
C-4''	67.7 <i>t</i>	67.8 <i>t</i>	67.9 <i>t</i>	176.5 <i>q</i>
C-5''	16.7 <i>q</i>	16.7 <i>q</i>	16.7 <i>q</i>	17.3 <i>s</i>
-OMe	—	—	—	51.7 <i>q</i>

gradients of EtOAc and hexane. Appropriate portions were combined to give six frs A–F in ascending order of polarity. Fr. B on HPLC (silica gel, EtOAc-hexane, 1:4) gave 17 mg of (**4**), as well as undefined material. Fr. D on HPLC (silica gel, EtOAc-hexane, 7:13) gave 8 mg of scoparone (**7**) and 35 mg of (**3**), as well as undefined material. Fr. E on HPLC (silica gel, EtOAc- CHCl_3 , 3:2) gave 7 mg of 6,7,8-trimethoxycoumarin (**5**), 5 mg of isofraxidin (**6**), 60 mg of (–)-4'-(4"-hydroxy-3"-methylbutyloxy)-3-phenylpropanol (**1**) and 49 mg of (**2**), as well as undefined material. Known compounds were identified by comparison of spectral properties with those of authentic samples.

(–)-4'-(4"-Hydroxy-3"-methylbutyloxy)-3-phenylpropanol (**1**). $[\alpha]_D^{24} = 9.2^\circ$ (MeOH; c 0.22). ^{13}C NMR: see Table 2.

(–)-4'-(4"-Hydroxy-3"-methylbutyloxy)-3-phenylpropanol (**2**). Solid. $[\alpha]_D^{24} = 5.1^\circ$ (MeOH; c 0.21). UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm (log ϵ): 280 (3.79). IR ν_{max} cm^{-1} : 3385 (OH), 1612, 1512, 1464, 1246, 1174, 1016. HRMS m/z : 236.1404 [$\text{M}]^+$ (calc. 236.1412, $\text{C}_{14}\text{H}_{20}\text{O}_3$). MS m/z (rel. int.): 236

$[M]^+$ (30), 150 (72), 107 (100), 94 (51), 77 (12). ^1H and

^{13}C NMR: see Tables 1 and 2.

(+)4'-(4"-Hydroxy-3"-methylbutyloxy)-3-phenylpropenal (3). Solid. $[\alpha]_{\text{D}}^{24}$ 5.7° (MeOH; *c* 0.15). UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm (log ϵ): 318 (4.06). IR ν_{max} cm $^{-1}$: 3412 (OH), 1668, (CHO), 1601, 1512, 1471, 1251, 1174, 1016. HRMS *m/z*: 234.1263 $[M]^+$ (calc. 234.1256, $\text{C}_{14}\text{H}_{18}\text{O}_3$). MS *m/z* (rel. int.): 234 $[M]^+$ (28), 147 (95), 131 (81), 119 (100), 91 (17). ^1H and ^{13}C NMR: see Tables 1 and 2.

(+)4'-(4"-Methoxy-3"-methyl-4"-oxobutyloxy)-3-phenylpropenal (4). Solid. $[\alpha]_{\text{D}}^{24}$ 29.4° (MeOH; *c* 0.07). UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm (log ϵ): 317 (4.01). IR ν_{max} cm $^{-1}$: 1732 (C(=O)O), 1674, (CHO), 1601, 1512, 1462, 1250, 1175. HRMS *m/z*: 262.1188 $[M]^+$ (calc. 262.1205, $\text{C}_{15}\text{H}_{18}\text{O}_4$). MS *m/z* (rel. int.): 262 $[M]^+$ (18), 213 (65), 147 (23), 115 (100). ^1H and ^{13}C NMR: see Tables 1 and 2.

REFERENCES

1. Liu, R.-T. (1962) *Chart of Woody Plants in Taiwan*, p. 8961. National Taiwan University, Taiwan, R.O.C.
2. Hsiao, J.-J., Liu, H.-T. and Chiang, H.-C. (1994) *Chinese Pharmaceutical J.* **46**, 199.
3. Reisch, J., Wickramasinghe, A. and Kumar, V. (1989) *Phytochemistry* **28**, 3242.
4. Boulare, R. T. and Stermitz, F. R. (1981) *J. Nat. Prod.* **44**, 200.
5. Ishii, H., Ohida, H. and Hanginiwa, J. (1972) *Yakugaku Zasshi* **92**, 118.
6. Barbera, O., Marco, J. A., Sanz, J. F. and Parareda, J. S. (1986) *Phytochemistry* **25**, 2357.
7. Banthorpe, D. V. and Brown, G. D. (1989) *Phytochemistry* **28**, 3003.