

TRITERPENE METHYL ETHERS FROM PALMÆ EPICUTICULAR WAXES

S. GARCÍA, H. HEINZEN, C. HUBBUCH,* R. MARTÍNEZ, X. DE VRIES† and P. MOYNA‡

Farmacognosia y Productos Naturales, Facultad de Química, CC 1157, Montevideo, Uruguay; *Institut für klinische Pharmakologie, Klinikum der Universität Heidelberg, Bergheimer Str. 58, Heidelberg, F.R.G.; †Fairchild Tropical Garden, 10901 Old Cutler Road, Miami, FL 33156-4296, U.S.A.

(Received in revised form 7 February 1995)

Key Word Index—*Arecastrum romanoffianum*; *Butia capitata*; *Orbignya cohune*; *O. phalerata*; *O. speciosa*; Palmae; chemotaxonomy; triterpene methyl ethers; 3- β -methoxy lupane.

Abstract—Cylindrin and lupeol methyl ether were isolated for the first time from Palmae leaf epicuticular waxes. *Butia capitata* and *Orbignya* spp. contain large amounts of ethers, but these are absent in *Arecastrum romanoffianum*. A new triterpene methyl ether was isolated from *O. phalerata* wax. The new compound was characterized as 3- β -methoxy lupane.

INTRODUCTION

Triterpene methyl ethers have been isolated from a number of plants, in particular Graminae [1, 2], and have been used as taxonomic markers [3]. In Palmae, triterpene methyl ethers have been isolated from fruits [4]. The present paper describes the isolation of triterpene methyl ethers from epicuticular waxes of *Orbignya* spp. and *Butia capitata*, and includes the structural elucidation of a new compound. These results are viewed in terms of the chemotaxonomy of the Coccoid family (Palmae) and the genera *Orbiginia*, which presents some difficulty when attempting to distinguish between early growing species [5].

RESULTS AND DISCUSSION

The leaf epicuticular waxes of *Orbignya phalerata*, *O. speciosa*, *O. cohune*, *Butia capitata* and *Arecastrum romanoffianum* were analysed by TLC-densitometry [6] and GC. The results shown (Table 1) are the average of four determinations with a standard deviation of less than 5%.

All palm waxes, except that of *A. romanoffianum*, when developed with toluene on TLC, presented a main fraction (A) at R_f 0.85. These fractions were purified by column chromatography and separated into compounds with ^1H NMR peaks at δ 3.35 and IR signals at 2820 and 1080 cm^{-1} . These signals can be assigned to a methoxy group. The main fraction of *A. romanoffianum* epicuticular wax was made up of alkanols (78%).

GC of fraction A from *O. cohune* presented one main peak ($> 99.5\%$, R_f 28 min) with the same mass spectrum as cylindrin [7].

In the case of *O. speciosa* and *B. capitata* the main peak ($> 99.5\%$, R_f 27.5 min) was characterized by MS as lupeol methyl ether [2].

Fraction A from *O. phalerata* gave rise to two GC peaks. The first (R_f 27.5 min), had a mass spectrum identical to that reported for lupeol methyl ether [2] and accounted for 97% of the fraction. The second peak (R_f 29.5 min) showed a $[\text{M}]^+$ at m/z 442 and the typical breakdown pattern of a lupane triterpene with an isopropyl group in ring E (m/z 191) [8]. The other peaks were identical to the corresponding lupanes with a shift of 14 of the ions containing the A-ring (methyl ether group). Based on the above evidence the compound was characterized as 3- β -methoxy lupane. It constituted 2% of the fraction.

The fact that triterpene methyl ethers are absent from *A. romanoffianum* wax is interesting from a chemotaxonomic point of view, as all the palms studied belong to the Coccoid family, indicating a different enzyme specificity between *A. romanoffianum* and *Butia*–*Orbignya* spp. In *Butia* species the alkanol plus triterpene methyl ether fractions represent 60–80%. Alkanols account for 78% of the *A. romanoffianum* epicuticular wax.

EXPERIMENTAL

^1H NMR: 100 MHz, CDCl_3 , TMS as int. standard; GC-MS: Hewlett Packard system; GC: HP5890 with HP-1 capillary column (60° , 1 min, $10^\circ \text{ min}^{-1}$ to 290°) and a Quadrupolar HP5989A: scan mode between m/z 40 and 650 in EI (70 eV, 2000 V detector, source temp. 170°). IR: KBr; TLC: pre-coated (Merck 5554). All solvents were redistilled from glass prior to use. TLC plates were read at 450 nm using a Shimadzu CS-9000 TLC densitometer.

The Palmae voucher codes and origins of the origins needs are as follows: *Orbignya cohune*, FTG 74-124C,

†Author to whom all correspondence should be addressed.

Table 1. Composition of waxes (% by TLC-densitometry)

	<i>O. phalerata</i>	<i>O. cohune</i>	<i>O. speciosa</i>	<i>B. capitata</i>	<i>A. romanzoffianum</i>
Hydrocarbons (%)	12	8	10	5	10
Esters (%)	4	6	0	3	5
Fraction A (%)	34	56	85	67	0
Alcohols (%)	26	14	0	8	78
Polar compounds (%)	24	16	5	17	7
Grams of wax per 100 g of leaf	0.27	0.15	0.45	0.44	0.58

Belize; *O. phalerata*, FTG 58-831B, Bolivia; *O. speciosa*, FTG 60-721, Brazil; *Butia capitata*, MVFQ 3504, Uruguay; *Arecastrum romanzoffianum*, MVFQ 3505, Uruguay.

Extraction and fractionation of the wax. Leaves (100 g) were washed with 500 ml *n*-hexane for 30 sec. The solvent was evapd under red. pres. at room temp. and 0.5 g of the residual wax applied to a 100 g silica gel 40 (Merck) column which was then eluted with 500 ml of hexane-benzene (4:1).

Orbignya phalerata, *O. speciosa* and *B. capitata*. *Fraction A*, lupeol methyl ether. GC: R_t 27.5 min; MS m/z : 440, 393, 222, 189; NMR: δ 4.68 (*d*), 3.35 (*s*), 2.63 (*m*), 1.71 (*s*).

Orbignya phalerata. *Fraction A*, second component (3- β -methoxy-lupane). GC: R_t 29.5 min; MS m/z 442, 395, 222, 191, 189.

Orbignya cohune. *Fraction A*, (cylindrin). GC: R_t 28.0 min; MS m/z : 440, 425, 393, 287, 273.

REFERENCES

1. Ohmoto, T. and Ikuse, M. (1970) *Phytochemistry* **9**, 2137.
2. Russell, G. B., Connor, H. E. and Purdie, A. W. (1976) *Phytochemistry* **15**, 1933.
3. Martin-Smith, M., Subramanian, G. and Connor, H. E. (1967) *Phytochemistry* **6**, 559.
4. Goh, S. H., Lai, G. F. and Gee, P. T. (1988) *Phytochemistry* **27**, 887.
5. Tomlinson, P. B. (1961) *Anatomy of the Monocotyledons. II Palmae*. Oxford University Press, Oxford.
6. Martínez, R. and Moyna, P. (1990) *J. Liq. Chrom.* **13** (10), 1959.
7. Bryce, T. A., Martin-Smith, M., Osske, G., Schreiber, K. and Subramanian, G. (1967) *Tetrahedron* **23**, 1283.
8. Budzikiewicz, H., Wilson, J. M. and Djerassi, C. (1963) *J. Am. Chem. Soc.* **85**, 3688.