

ACETYLENES AND TERPENOIDS OF *BELLIS PERENNIS*

PINAROSA AVATO and ALDO TAVA*

Dipartimento Farmaco-Chimico, Facoltà di Farmacia, Università, via Orabona 4, I-70125 Bari, Italy; *Istituto Sperimentale per le Colture Foraggere, V. le Piacenza 29, I-20075 Lodi, Italy

(Received in revised form 31 January 1995)

Key Word Index—*Bellis perennis*; Asteraceae; daisy; essential oils; acetylenes; deca-4,6-dynoic acid; methyl deca-4,6-dynoate; 2,8-tetrahydromatricaria ester.

Abstract—The essential oils of leaves and flowers from *Bellis perennis*, the common daisy, have been investigated. Polyacetylenes were one of the major chemical classes (18–21%) mainly consisting of two new C₁₀ acetylenic compounds which were identified, by spectroscopic and chemical means, as methyl deca-4,6-dynoate (2,8-tetrahydromatricaria ester) and deca-4,6-dynoic acid.

INTRODUCTION

Bellis perennis L., the common daisy, is a perennial herbaceous plant widely distributed in Europe. Traditionally it is used in the treatment of rheumatism and as an expectorant [1]. It has also been employed as a vulnerary and against ecchymoses in veterinary medicine. Furthermore, it has been shown that the plant possesses antifungal activity [2, 3]. We have analyzed the chemical composition of the essential oils from leaves and flowers of wild plants collected in Italy. Although there are several reports on the presence of saponins in the roots [4], the aerial organs have been little investigated [5] and there are no reports on the volatile compounds from this plant.

RESULTS AND DISCUSSION

The results of our study on the essential oils obtained from the leaves and the flowers of *B. perennis* are shown in Table 1. The components identified, amounting to 97% of the total, are grouped into chemical classes. The main bulk of the constituents in the two parts of the plant was made up of monoterpenes (47% and 62% from leaves and flowers, respectively) with β-myrcene (15.05% leaves; 28.43% flowers) and geranylacetate (11.99% leaves; 6.10% flowers) as the main volatiles. As shown, little variation was found in the compositional profile of the two plant organs, apart from the large amount of *cis*-3-hexenol (15.08%) in the leaves compared to the flowers (0.43%). The presence of *cis*-3-hexenol should not be regarded as unusual, however. Thus, C₆ leaf alcohols and aldehydes are widely distributed in fresh plant green tissues and are considered to be responsible for the typical 'green leaf odour' of grasses [6, 7].

Previous studies performed on the Asteraceae, have shown that the family is chemically very distinct with characteristic sesquiterpene lactones, pentacyclic triter-

pene alcohols, derivatives of caffeic acid and acetylenic compounds. Within the family, the tribe of Astereae is distinguished by the presence of typical polyacetylenes, polyenes and related substances and by the rarity or absence of sesquiterpene lactones [5].

As reported in Table 1, polyacetylenes represented abundant constituents also in the essential oils from *B. perennis* leaves (18%) and flowers (21%). After GC-EI-MS analyses of the total volatiles only minor polyacetylenic compounds could be identified, while identification of the major component 1 (13.87% and 15.04% in leaves and flowers, respectively) remained doubtful. CC separation of a total extract from the aerial organs of the plant led to the isolation of a fraction containing purified 1, which was used for further spectroscopic investigations.

A characteristic IR absorption band at 1740 cm⁻¹ was indicative of an ester group while a very weak absorption in the region 2230, 2152 cm⁻¹ (C≡C) suggested the presence of a disubstituted acetylene. The ¹H and ¹³C NMR spectra (Table 2) provided more insight into the molecular structure of 1. A three-proton singlet at δ3.70 corroborated the presence of a methyl ester group. Moreover, the presence of a saturated fragment CH₃—(CH₂)₂— was suggested by the triplet signal at δ0.98, accounting for 3H, and the two signals at δ1.55 (2H, *tq*) and δ2.22 (2H, *tt*). The ¹³C NMR spectrum showed the presence of 11 carbons. Absorptions for four quaternary carbons and one methoxyl group were found (Table 2). Further evidence for a structural fragment —CH₂—C≡C—C≡C—CH₂— was also provided by the signals at δ2.22 and 2.58, in the ¹H NMR spectrum, corresponding to the methylene groups adjacent to acetylenic carbons. The assignment of acetylenic as well as methylene and methyl carbons were also confirmed by DEPT experiments (Table 2). Furthermore, MS fragmentation of 1 gave a molecular ion peak

Table 1. Composition (%) of essential oils from *B. perennis* leaves (L) and flowers (F)

Components	L	F	Detected in fraction¶
Aldehydes	1.56	1.81	
Hexanal	0.12	0.17	W, P ₁
Heptanal	0.08	0.16	W, P ₁
Nonanal	0.38	0.27	W, P ₁
Decanal	0.08	tr*	W, P ₁
<i>trans</i> -2-Hexenal	0.06	0.14	W, P ₁
2,4-Hexadienal	0.26	0.29	W, P ₁
Heptadienal	0.01	0.02	W, P ₁
Decadienal	tr	tr	P ₁
Benzaldehyde	0.09	0.14	W, P ₁
Phenylacetaldehyde	0.48	0.62	W, P ₁
Alcohols	16.59	1.69	
Hexanol	0.27	0.08	W, P ₁
Heptanol	0.01	tr	P ₁
Octanol	0.10	tr	W, P ₁
2-Ethyl-1-hexenol	0.06	tr	W, P ₁
<i>trans</i> -2-Hexenol	0.58	0.20	W, P ₁
<i>cis</i> -3-Hexenol	15.08	0.43	W, P ₁
Oct-1-en-3-ol	0.26	tr	W, P ₁
Benzylalcohol	0.11	0.24	W, P ₁
2-Phenylethanol	tr	tr	P ₁
Phytol	0.12	0.74	W, P ₁
Ketones	1.06	0.86	
6-Methyl-5-hepten-2-one	tr	0.02	P ₁
Oct-3-en-2-one	0.04	tr	W, P ₁
Nonan-2-one	0.09	0.22	W, P ₁
Pentadecan-2-one	0.34	0.14	W, P ₁
Heptadecan-2-one	0.21	0.13	W, P ₁
Pentadecan-2-one-6,10,14-trimethyl	0.38	0.28	W, P ₁
Acetophenone	tr	0.07	W, P ₁
Esters	1.01	1.08	
<i>cis</i> -3-Hexenylacetate	0.24	0.42	W, P ₁
<i>cis</i> -3-Hexenyl-2-methylbutanoate	0.09	0.05	W, P ₁
Octen-1-ol acetate	0.49	0.38	W, P ₁
Methyl palmitate	0.03	0.07	W, P ₁
Isopropyl palmitate	0.01	0.03	W, P ₁
Methyl linoleate	0.05	0.04	W, P ₁
Methyl linolenate	0.10	0.09	W, P ₁
Hydrocarbons	0.72	0.61	
Undecane	0.41	0.35	W, N
Dodecane	0.03	tr	N
Tridecane	0.12	0.07	W, N
Tetradecane	tr	0.05	N
Hexadecane	0.11	0.10	W, N
Heptadecane	0.05	0.04	W, N
Octadecane	tr	tr	N
Monoterpene	47.36	61.93	
α -Pinene	0.34	0.15	W, N
β -Pinene	4.10	4.05	W, N
β -Myrcene	15.05	28.43	W, N
Alloocimene	tr	tr	N
3-Carene	0.15	0.27	P ₁
1,4-Cineole	tr	0.02	P ₁
α -Terpinene	0.07	0.09	W, N
<i>p</i> -Cymene	tr	tr	N
Limonene	0.08	0.11	W, N
β -Phellandrene	1.30	1.16	W, N

Cont'd overleaf.

Table 1. *Contd.*

Components	L	F	Detected in fraction ^a
1,8-Cineole	0.25	0.32	W, P ₁
cis-Ocimene	tr	tr	N
trans-Ocimene	0.03	0.04	W, N
γ-Terpinene	tr	tr	N
cis-Linalooloxide	0.20	tr	W, P ₁
trans-Linalooloxide	tr	tr	P ₁
α-Terpinolene	0.03	tr	N
Linalool	0.54	1.19	W, P ₁
1,3,8-p-Menthatriene	tr	tr	N
cis-Pinenhydrate	1.18	2.25	W, P ₁
trans-Pinocarveol	0.05	tr	W, P ₁
trans-Pinenhydrate	0.88	1.37	W, P ₁
Camphor	0.60	0.71	W, P ₁
Pinocarvone	0.03	0.05	W, P ₁
Citronellal	0.25	0.07	W, P ₁
Lavandulol	0.19	0.23	W, P ₁
4-Terpineol	0.18	0.21	W, P ₁
α-Terpineol	0.21	0.73	W, P ₁
Dihydrocarveol	0.14	tr	W, P ₁
cis-Piperitol	0.26	0.39	W, P ₁
trans-Piperitol	0.51	0.69	W, P ₁
trans-Carvenol	0.15	1.10	W, P ₁
Nerol	0.22	0.20	W, P ₁
cis-Carveol	0.05	0.10	W, P ₁
Isogeraniol	tr	tr	P ₁
Pulegone	0.52	0.32	W, P ₁
Neral	0.02	tr	P ₂
Piperitone	0.95	1.16	W, P ₁
cis-Sabinenhydrate acetate	tr	0.04	P ₁
Geraniol	1.51	0.46	W, P ₁ , P ₂
Linalyl acetate	0.21	0.05	W, P ₁
cis-Verbenyl acetate	tr	tr	P ₁
Geranal	0.36	0.38	W, P ₁
Geranic acid methyl ester	0.82	1.10	W, P ₁
Thymol	0.12	0.01	W, P ₁ , P ₂
trans-Verbenyl acetate	tr	tr	P ₁
cis-Pinocarveyl acetate	0.37	0.25	W, P ₁
trans-Pinocarveyl acetate	0.09	0.02	W, P ₁
Sabinyl acetate	0.99	0.30	W, P ₁
Dihydrocarveyl acetate	0.19	0.20	W, P ₁
Lavandulyl acetate	0.06	0.15	W, P ₁
α-Terpinenyl acetate	0.07	0.10	W, P ₁
Neryl acetate	1.65	7.31	W, P ₁
Geranyl acetate	11.99	6.10	W, P ₁
Geranilacetone	0.06	0.04	W, P ₁
Neryl propionate	tr	tr	P ₁
Geranyl propionate	0.12	0.01	W, P ₁
Neryl angelate	tr	tr	P ₁
Geranyl angelate	0.01	tr	P ₁
Sesquiterpenes			
δ-Elemene	3.25	1.71	
α-Cubebene	0.01	tr	N
Naphthalene-1,2,3,4,4a,7-hexahydro-1,6-Dimethyl-4-(1-methylethyl)	0.09	0.02	W, N
α-Ylangene	tr	tr	N
α-Copaene	0.16	0.10	W, N
β-Patchoulene	0.08	0.11	W, N
β-Bourbonene	0.12	0.07	W, N
β-Cubebene	0.10	0.15	W, N

Cont'd overleaf.

Table 1. *Contd.*

Components	L	F	Detected in fraction ¶
β -Caryophyllene	0.39	0.14	W, N
Aromadendrene	0.02	0.03	W, N
α -Himachalene	0.15	0.10	W, N
α -Humulene	0.10	0.08	W, N
cis- β -Farnesene	0.32	0.12	W, N
allo-Aromadendrene	tr	tr	N
γ -Murolene	0.26	0.10	W, N
Curcumene- <i>ar</i>	tr	tr	N
β -Selinene	tr	tr	N
δ -Selinene	tr	tr	N
α -Selinene	tr	tr	N
Germacrene B	0.05	tr	W, N
α -Longipinene	tr	0.01	N
α -Murolene	tr	tr	N
α -Farnesene	0.16	0.05	W, N
γ -Cadinene	0.46	0.30	W, N
2,4,6-Trimethylazulene	tr	tr	N
δ -Cadinene	0.43	0.08	W, N
4,5,9,10-Dehydroisolongifolene	0.16	0.01	W, N
Neophytadiene	0.19	0.24	W, N
Torreyol	tr	tr	P ₁
Poliacetylenes	18.27	20.73	
Methyl deca-4,6-diynoate	13.87	15.04	W, P ₁
Lachnophyllum ester	2.83	3.53	W, P ₁
Matricaria ester†	0.16	0.23	W, P ₁
Matricaria ester†	0.07	0.10	W, P ₁
Deca-4,6-diynoic acid	1.03	1.40	W, A
Lachnophyllum acid	0.31	0.43	W, A
Diterpenes			
Abietatriene	tr	tr	N
Acids	2.34	2.56	
Octanoic acid	tr	tr	A
Nonanoic acid	tr	tr	A
Decanoic acid	tr	tr	A
Undecanoic acid	tr	tr	A
Lauric acid	0.68	0.35	W, A
Tridecanoic acid	tr	tr	A
Myristic acid	0.22	0.40	W, A
Pentadecanoic acid	tr	tr	A
Palmitic acid	1.06	1.21	W, A
Heptadecanoic acid	tr	tr	A
Stearic acid	0.10	0.18	W, A
Hexandicarboxylic acid	tr	tr	A
Palmitoleic acid	tr	tr	A
Linoleic acid	0.08	0.10	W, A
Linolenic acid	0.20	0.32	W, A
Benzoic acid	tr	tr	A
Phenylacetic acid	tr	tr	A
Coumaric acid	tr	tr	P ₂ , A
Miscellaneous	1.98	2.15	
1,2,3-Trimethylbenzene	0.01	tr	N
trans-Decahydronaphthalene	tr	tr	N
Naphthalene	tr	tr	N
3,5-Dimethylphenol	0.03	0.05	W, P ₂
Naphthalene-1,2-dihydro-1,1,6-trimethyl	tr	tr	N
p-Vinylguaiacol	0.23	0.19	W, P ₂
Amethole	tr	0.01	P ₂

Cont'd overleaf.

Table 1. *Contd.*

Components	L	F	Detected in fraction [¶]
Eugenol	0.02	0.06	W, P ₂
β-Damascenone	0.10	0.16	W, P ₁
β-Ionone	0.36	0.19	W, P ₁
2,3-Dihydrobenzofuran	0.92	1.24	W, P ₁ , P ₂
Dihydroactinidiolide	0.30	0.25	W, P ₁
cis-Cyclododecene	0.01	tr	N
Unidentified	2.72	1.87	
MW = 182	1.34	1.10	W, P ₁
MW = 182	0.20	0.11	W, P ₁
MW = 182	0.10	0.08	W, P ₁
MW = 182	0.43	0.34	W, P ₁
Monoterpene C ₁₀ H ₁₆ O	0.05	0.10	W, P ₁
Sesquiterpene C ₁₅ H ₂₄	0.02	0.14	W, N
Diterpene C ₂₀ H ₃₂	tr	tr	N
Total %	96.86	96.99	

*tr: traces ($\leq 0.01\%$); $> 0.01\%$ quoted to nearest 0.01%.

• W, whole essential oil; N, non polar fraction; P₁, P₂, polar fractions (see text); A, acid fraction.

[†]Isomers not identified.

Table 2. ¹H and ¹³C NMR spectral data of acetylene **1** (¹⁰CH₃-⁹CH₂-⁸CH₂-⁷C≡⁶C-⁵C≡⁴C-³CH₂-²CH₂-¹COOCH₃)

H	C	J (Hz)	DEPT
10	0.98 t [7.0]	1	171.88 C
9	1.55 t [7.0]	2	32.78 CH ₂
8	2.22 tt [7.0; 1.0]	3	15.02 CH ₂
2, 3	2.58 m	4	74.77 C
OMe	3.70 s	5	65.95 C
		6	64.98 C
		7	78.08 C
		8	21.03 CH ₂
		9	21.64 CH ₂
		10	13.34 CH ₃
		OMe	51.76 CH ₃

at *m/z* 178, consistent with a molecular formula of C₁₁H₁₄O₂, and a base peak at *m/z* 91 corresponding to a [C₇H₇]⁺ ion derived by loss of a (C₂H₄ + CO₂CH₃) group from the parent ion to give a [CH₃CH₂CH₂C≡C-C≡C-] ⁺ fragment. On the basis of the above spectroscopic data, compound **1** was identified as methyl deca-4,6-diynoate (2,8-tetrahydromatricaria ester), a hydrogenated relative to matricaria ester, never reported previously as a natural product. The synthesis of methyl deca-4,6-diynoate is, however, described in the literature, although only the UV data were used to characterize the product [8].

To obtain an unequivocal structural elucidation of natural compound **1**, we prepared synthetic **1** (see Experimental). The chromatographic behaviour and spectroscopic features (MS, NMR, UV) of synthetic **1** were

superimposable on those of the natural methyl deca-4,6-diynoate obtained by us from the epigeal parts of *B. perennis*. Two products, **3** and **4**, were formed along with synthetic **1**. Their spectroscopic data allowed the identification of **3** as deca-4,6-diynoate and **4** as dimethyl octa-3,5-diyn-1,8-dioate (Experimental, Tables 3 and 4).

Finally, GC and GC-MS analysis of the acid fraction (after treatment with CH₂N₂; see Experimental) ob-

Table 3. ¹H and ¹³C NMR spectral data of acetylene **3** (¹⁰CH₃-⁹CH₂-⁸CH₂-⁷C≡⁶C-⁵C≡⁴C-³CH₂-²CH₂-¹CH₃)

H	C	J (Hz)
1, 10	0.98 t [7.0]	1
2, 9	1.51 t [7.0]	2, 9
3, 8	2.22 tt [7.0; 1.0]	3, 8
		4, 7
		5, 6

Table 4. ¹H and ¹³C NMR spectral data of acetylene **4** (CH₃OCO-⁹CH₂-⁸CH₂-⁷C≡⁶C-⁵C≡⁴C-³CH₂-²CH₂-¹COOCH₃)

H	C	J (Hz)
2, 3, 8, 9	2.58 m	1
OMe	3.72 s	2, 9
		3, 8
		4, 7
		5, 6
		OMe

tained by CC fractionation of the oil, revealed the presence of a component showing the same chromatographic elution time and identical fragmentation pattern as 1. This compound was identified as deca-4,6-dynoic acid (2). Both compounds are reported here, to the best of our knowledge, for the first time.

Polyacetylenes are common constituents of several higher plants and fungi [9–13]. C_{10} polyacetylenes seem to be typical of the Astereae, with matricaria ester (methyl deca-2,8-dien-4,6-dynoate) as the most widespread compound [9, 14]. Over the years, a number of dehydrogenated acetylenes related to matricaria ester have been isolated from natural sources, in contrast, among the hydrogenated derivatives, only *cis*-8-dihydro matricaria ester has been found to occur frequently as a natural product [7–9]. Thus the finding of compounds 1 and 2 enlarge the series of the hydrogenated relatives of matricaria ester. Their isolation from *B. perennis*, however, should not be regarded as completely unexpected. It is, in fact, consistent with previous studies which established the presence of deca-4,6-dynoic acid diesters in *B. perennis* root extracts [15, 16].

EXPERIMENTAL

General. TLC: silica gel 60F254. Compounds were visualized by heating at 120° after spraying with vanillin (1% EtOH)– H_2SO_4 (5% EtOH) reagent. Polyacetylenes were detected by inspection under UV light. CC: silica gel 60H, 230–400 mesh; IR: KBr discs; UV: hexane; 1H and ^{13}C NMR: 300 MHz, $CDCl_3$ with TMS as int. standard. Multiplicities and the assignment of ^{13}C chemical shifts were made with the aid of DEPT. FID-GC: a DB5-bonded phase fused silica capillary column (30 m; 0.32 mm i.d.; 0.25 μ m film thickness) with the following program: 40° (5 min), 4° min to 280° (20 min). Injector and detector port were kept at 290°. The splitless mode (1 μ l) injection was used. He was the carrier gas with a head pressure of 12.0 psi. Data were processed with the aid of a computing integrator. GC-EI-MS: DB5 (as above) and OV1 capillary column (25 m; 0.25 mm i.d.; 0.25 μ m film thickness) directly inserted into the ion source. Analytical conditions were the same as for GC. MS: 40–500 amu, 1 scan sec^{-1} ; ionizing electron energy, 70 eV; electron current, 0.3 mA; ion source, 200°; vacuum, 10^{-5} torr.

Plant material. Wild flowering plants of *Bellis perennis* L. were collected in the surroundings of Pavia (Italy). Only the aerial parts were used for the extraction of essential oils.

Extraction of the essential oils. Flowers (40 g) and leaves (70 g) were steam distilled separately for 1 hr. The distillate was saturated with NaCl, extracted with distilled Et_2O , dried overnight with Na_2SO_4 and then concentrated under vacuum to give 2.1 and 3.0 mg of essential oil from flowers and leaves, respectively. The organic extracts were analyzed directly by GC and GC-MS.

Fractionation of the essential oils. The oils were subjected to gradient elution CC. Pentane was used to recover the non-polar fraction (N) containing terpenes,

aliphatic and aromatic hydrocarbons. Successive elution with Et_2O afforded esters, aldehydes, alcohols and oxygenated terpenes (P₁). Phenols were identified in the fraction (P₂) obtained with Et_2O –MeOH (9:1). Finally, Et_2O –MeOH–AcOH (89:10:1) gave the acidic fraction (A). Solvent was removed by distillation using a rotary evaporator. All the eluted fractions were analyzed by GC and GC-MS. Fraction A was methylated with CH_2N_2 prior to GC and GC-MS.

Identification of the essential oil components. Authentic reference compounds, peak matching library search, as well as published mass spectra [17–20] were used for identification.

Isolation and purification of methyl deca-4,6-dynoate (1). About 14 kg of flowers and leaves from *B. perennis* were steam distilled together as described above to yield 407 mg of essential oils. The extract on CC using the same solvent system as previously described gave four fractions: N, 225 mg, 55% of the total oil; P₁, 160 mg, 39%; P₂, 3 mg, 0.7% and A, 6 mg, 2%. Pure 1 (14.0 mg) was obtained when the solvent mix was approximately 5% Et_2O . All the eluted fractions were analyzed by GC and GC-MS. The acid fraction was methylated with CH_2N_2 before GC and GC-MS. Compound 1 was also submitted to IR, UV and NMR for identification.

Synthesis of 1. Pent-4-yn-1-oic acid (0.95 g, 9.7 mmol) was treated with CH_2N_2 to give the corresponding methyl ester which was then reacted at room temp. with pent-1-yn (1.01 g, 14.8 mmol), in a soln of NH_4Cl (3.3 g), $CuCl$ (21 g) and 0.6 ml 2M ammonia in 75 ml H_2O [8]. The reaction mixture was mechanically stirred for 2 hr and then extracted with Et_2O . Synthetic compound 1 was purified from the by-products 3 and 4 by CC. UV, GC-MS and NMR spectra were acquired for 1, 3 and 4. Synthetic and natural compound 1 were also submitted to co-chromatography.

Methyl deca-4,6-dynoate (1). UV λ_{max} nm (ϵ): 225 (460), 237 (357), 253 (208), 287 (53); closely resembles UV spectral data reported in reference [8]. IR ν_{max} cm^{−1}: 2230, 2152 (C≡C–C≡C), 1740 (C=O); EI-MS m/z (rel. int.): [M^+ , $C_{11}H_{14}O_2$] 178 (58), [M –Me]⁺ 163 (6), [M – C_2H_4]⁺ 150 (42), [M – OCH_3]⁺ 147 (31), [M – C_3H_7]⁺ 135 (39), [M – CO_2CH_3]⁺ 119 (36), 107 (92), 103 (39), [M – C_2H_4 – CO_2CH_3]⁺ 91 (100), 77 (81), 63 (50), 51 (33); NMR: Table 2.

Deca-4,6-diyne (3). UV λ_{max} nm (ϵ): 225 (391), 239 (373), 253 (221); EI-MS m/z (rel. int.): [M^+ , $C_{10}H_{14}$] 134 (55), 119 (6), 117 (9), 115 (4), 105 (24), 103 (21), [M – C_3H_7]⁺ 91 (100), 79 (40), 77 (59), 63 (31); 1H and ^{13}C NMR: Table 3.

Dimethyl octa-3,5-diyne-1,8-dioate (4). UV λ_{max} nm (ϵ): 225 (821), 253 (302), 275 (288), 287 (342); EI-MS m/z (rel. int.): [M^+ , $C_{12}H_{14}O_4$] 222 (6), 207 (4), 194 (68), 191 (39), 179 (22), 163 (53), 149 (36), [M – $CH_2CH_2CO_2CH_3$]⁺ 135 (50), 121 (76), 103 (65), 91 (85), 77 (100); 1H and ^{13}C NMR: Table 4.

Acknowledgements—Dr M. Mella (Pavia) and Dr S. Allegri (Milano) are thanked for recording NMR and IR spectra, respectively. We thank Mr G. Tava for collecting the plant material as well as Mr S. Sciacovelli and Mr F.

Racaniello for assistance in preparing the manuscript. This work was supported by the Italian Ministero dell'Università e della Ricerca Scientifica (60% funds).

REFERENCES

1. Hansel, R., Keller, K., Rimpler, H. and Schneider, G. (eds) (1992) *Hagers Handbuch der Pharmazeutischen Praxis*. Springer, Berlin.
2. Desevedavy, C., Amoros, M., Girre, L., Lavaud, C. and Massiot, G. (1989) *J. Nat. Prod.* **52**, 184.
3. Hiller, K., Bader, G. and Schöpke, T. (1990) *Planta Med.* **56**, 644.
4. Schöpke, T., Wray, V., Kunath, A. and Hiller, K. (1992) *Phytochemistry* **31**, 2555.
5. Heywood, V. H., Harborne, J. B. and Turner, B. L. (1977) *The Biology and Chemistry of the Compositae*. Academic Press, London.
6. Hatanaka, A. (1983) *Bull. Inst. Chem. Res.* **61**, 180.
7. Tava, A., Berardo, N. and Odoardi, M. (1991) *Phytochemistry* **30**, 1455.
8. Christensen, P. K. and Sørensen, N. A. (1952) *Acta Chem. Scand.* **6**, 901.
9. Bohlmann, F., Burkhardt, T. and Zdero, C. (1973) *Naturally Occurring Acetylenes*. Academic Press, New York.
10. Christensen, L. P. and Lam, J. (1991) *Phytochemistry* **30**, 11.
11. Christensen, L. P. (1992) *Phytochemistry* **31**, 7.
12. Christensen, L. P. and Lam, J. (1990) *Phytochemistry* **29**, 2753.
13. Sørensen, N. A. (1961) *Proc. Chem. Soc. (Lond.)* 98.
14. Christensen, L. P. and Lam, J. (1991) *Phytochemistry* **30**, 2453.
15. Bohlmann, F., Zdero, C. and Kapteyn, H. (1969) *Chem. Ber.* **102**, 1682.
16. Bohlmann, F. and Tietze, B-M. (1970) *Chem. Ber.* **103**, 561.
17. HP59943A NBS1 PBM Data Base, Copyright Hewlett Packard Co. (1988).
18. Jennings, W. and Shibamoto, H. (1980) *Qualitative Analysis of Flavor and Fragrance Volatiles by Glass Capillary Gas Chromatography*. Qualitative Flavor Academic Press, New York.
19. Adams, P. R. (1989) *Identification of Essential Oils by Ion Trap Mass Spectroscopy*. Academic Press, New York.
20. Bohlmann, F., Zdero, C., Bethke, H. and Schumann, D. (1968) *Chem. Ber.* **101**, 1553.