

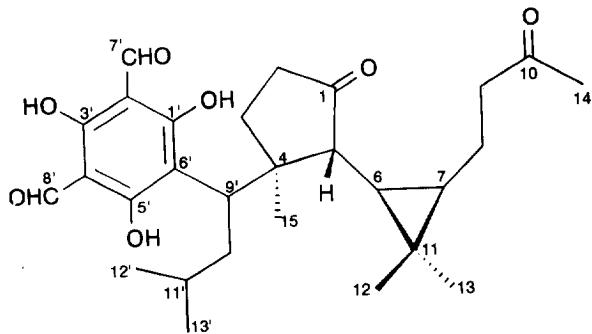
EUCALYPTONE FROM *EUCALYPTUS GLOBULUS*

KENJI OSAWA, HIDEYUKI YASUDA, HIROSHI MORITA,* KOICHI TAKEYA* and HIDEJI ITOKAWA*

Department of Basic Research, Lotte Central Laboratory Co., Ltd., Numakage, 3-1-1, Urawa, Saitama 336, Japan; *Department of Pharmacognosy, Tokyo College of Pharmacy, Horinouchi 1432-1, Hachioji, Tokyo 192-03, Japan

(Received in revised form 17 February 1995)

Key Word Index—*Eucalyptus globulus*; Myrtaceae; eucalyptone; antibacterial activity; cariogenic bacteria; glucosyltransferase.**Abstract**—A new cariostatic compound named eucalyptone was isolated from the leaves of *Eucalyptus globulus*. The structure of this compound was elucidated by spectroscopic methods.


INTRODUCTION

Plants of the genus *Eucalyptus* contain many kinds of phloroglucinol derivatives, such as macrocyclics and euglobals, and some of these compounds possess interesting biological activities [1-3]. In our continuing studies [4, 5] on cariostatic compounds from natural sources, an isopentyl phloroglucinol-sesquiterpene coupled compound, named eucalyptone (**1**), was isolated from the leaves of *Eucalyptus globulus*. This compound has a unique sesquiterpene moiety with both a five-membered ring and a cyclopropane ring system. This paper deals with the structural analysis and cariostatic activities of this compound.

RESULTS AND DISCUSSION

The 50% EtOH-soluble material from the dried leaves of *E. globulus* showed appreciable antibacterial activity against cariogenic bacteria and also inhibited the enzyme glucosyltransferase (GTase) [6]. An active principle was found in the EtOAc-soluble fraction. This fraction was subjected to silica gel column chromatography followed by silica gel and ODS HPLC to afford compound **1**, which we have named eucalyptone, along with other macrocyclics.

Eucalyptone (**1**) was obtained as colourless powder. The high-resolution FAB mass spectrum supported the molecular formula of $C_{28}H_{39}O_7$ and the UV and IR data were similar to those of macrocyclics [1-3]. The 1H and ^{13}C NMR spectra established that **1** contained a phloroglucinol moiety [δ C 172.4(s) \times 2, 173.2(s), 107.1(s), 107.0(s) and 105.6(s)] containing two aldehyde groups [δ H 10.48 and 10.50 (each 1H, s), δ C 191.8 and 191.9 (each d)], and a methine moiety [δ H 3.51 (1H, dd, J = 11.8, 4.0 Hz), δ C 39.7(d)] bearing an isobutyl side chain [δ C 36.3(t), 27.3(d), 21.6 and 24.4 (each q)]. They also showed the presence of one carbonyl group [δ C 221.3(s)], one acetyl group [δ H 2.07 (3H, s), δ C 208.3(s)].

Fig. 1. Molecular structure of **1**.

29.6(q)], two methine groups forming a cyclopropane ring [δ H 0.61 (1H, dd, J = 7.0, 2.0) and 0.61 (1H, d, J = 7.0), δ C 27.3 and 26.5 (each d)], the *tert* methyl, four methylene and one methine group, and two quaternary carbons in a sesquiterpene moiety. The carbon linkage and carbonyl and acetyl connected sites for the sesquiterpene part of **1** were determined by means of 2D-NMR techniques, including 1H - 1H COSY, HMQC and HMBC spectra at 500 MHz (Table 1). As can be seen from formula **1**, eucalyptone (**1**) has a unique, sesquiterpene moiety containing both a five-membered ring and a cyclopropane ring system. The relative configurations at C-4, 5, 6 and 9 were elucidated as shown in Fig. 1 by NOE correlations in the NOESYH spectrum.

Eucalyptone (**1**) has antibacterial activity against cariogenic bacteria (MIC: 12.5 μ g ml⁻¹ against *Streptococcus mutans* Ingbratt, *Streptococcus sobrinus* 6715 and *S. sobrinus* B13; 6.25 μ g ml⁻¹ against *S. mutans* LA7) and an inhibitory effect on adherent water-insoluble glucan synthesis by GTase (97.6 and 44.0% inhibition at concentration of 100 and 10 μ g ml⁻¹) prepared from the supernatant of *S. sobrinus* 6715 [6]. These data indicate that **1** might be a promising natural substance for the development of a new cariostatic drug.

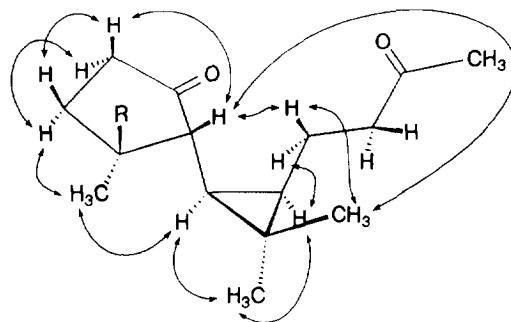


Fig. 2. NOE relationships of **1** in pyridine-*d*₅; R = isopentenyl phloroglucinol.

EXPERIMENTAL

General. HPLC: Senshu Pak silica-5251-S for normal phase and Senshu Pak ODS-5251-SS for reversed phase.

Plant material. The dried leaves of *E. globulus* used in this experiment were purchased from Charis Seijyo, Tokyo in 1994.

Assay of antibacterial activity. Aliquots (100 μ l) of two-fold serial dilutions of the test substance were placed into the wells of a flat-bottomed 96-well plate (Costar). Subsequently, 100 μ l of two-fold concentrated Brain Heart Infusion broth (Difco) containing $1-2 \times 10^5$ c.f.u. ml⁻¹ test organisms were inoculated into each well. The assay mixtures were incubated at 37° for 24 hr, and the minimum inhibitory concentration (MIC) recorded as the lowest concentration of test substance to inhibit growth.

Assay of GTase inhibitory activity. See previous paper [6].

Extraction and isolation. The dried leaves (1 kg) of *E. globulus* were extracted with 51.50% EtOH, to give 233 g of conc. extract. The extract (100 g) was fractionated into EtOAc (29 g), *n*-BuOH (31 g) and water (43 g)-soluble fractions. The EtOAc-soluble fraction was subjected to silica gel CC with CH₂Cl₂-MeOH (20:1-2:1 stepwise elution) and separated into 10 fractions. The biologically active fraction (896 mg) was separated by silica gel HPLC with CH₂Cl₂-MeOH (17:3) and ODS HPLC with MeOH-H₂O (9:1) to afford **1** (27.4 mg) along with other macrocyclics.

Eucalyptone (1). Powder, $[\alpha]_D + 44.6^\circ$ (EtOH; c 0.19); IR $\nu_{\text{max}}^{\text{KBr}}$ cm⁻¹: 3411, 2955, 1711, 1625; UV $\lambda_{\text{max}}^{\text{EtOH}}$ (log ϵ): 274 nm (4.15); EI FAB-MS (pos.) *m/z* 487 (calc. for C₂₈H₃₉O, 487.2696; found: 487.2685).

REFERENCES

1. Nishizawa, N., Emura, M., Yasuda, Y., Ogawa, K. and Hamanaka, N. (1992) *Tetrahedron Letters* **33**, 2983.

Table 1. ¹³C and ¹H spectral data, and HMBC correlations of **1** in pyridine-*d*₅

C	¹³ C (DEPT)	HMBC	¹ H (<i>J</i>)
1	221.3 (s)	H-2, 3, 5	
2	35.8 (t)		α 2.37 <i>ddd</i> (10.4, 10.4, 3.5) β 2.65 <i>m</i>
3	32.4 (t)	H-15	α 1.75 <i>dd</i> (10.4, 3.5) β 2.17 <i>ddd</i> (10.4, 10.4, 2.3)
4	47.6 (s)	H-9', 2, 15	
5	20.7 (t)	H-15	2.50 <i>d</i> (7.0)
6	27.3 (d)	H-5, 12, 13	0.61 <i>dd</i> (7.0, 2.0)
7	26.5 (d)	H-5, 12, 13	0.61 <i>d</i> (7.0)
8	44.4 (t)		2.30 <i>m</i> 1.78 <i>dd</i> (9.3, 7.0)
9	54.8 (d)		2.54 <i>dd</i> (9.3, 7.0) 2.68 <i>m</i>
10	208.3 (s)	H-9, 14	
11	18.2 (s)	H-12, 13	
12	16.0 (q)	H-13	1.13 <i>s</i>
13	28.9 (q)	H-6, 7, 12	1.11 <i>s</i>
14	29.6 (q)		2.07 <i>s</i>
15	21.6 (q)	H-9'	1.37 <i>s</i>
1'	172.4 (s)	H-7'	
2'	107.1 (s)	H-7'	
3'	173.2 (s)	H-7', 8'	
4'	107.0 (s)	H-8'	
5'	172.4 (s)	H-8'	
6'	105.6 (s)	H-9', 10'	
7'	191.8 (d)		10.48 <i>s</i>
8'	191.9 (d)		10.50 <i>s</i>
9'	39.7 (d)	H-5, 3, 15	3.51 <i>dd</i> (11.8, 4.0)
10'	36.3 (t)	H-9', 12', 13'	2.71 <i>dd</i> (13.4, 4.0) 1.40 <i>dd</i> (13.4, 4.1)
11'	27.3 (d)	H-12', 13'	1.55 <i>m</i>
12'	21.6 (q)	H-13'	0.89 <i>d</i> (6.2)
13'	24.4 (q)	H-12'	0.92 <i>d</i> (6.2)

Chemical shift values are in ppm. The coupling constants (*J* values) in parentheses are in Hz.

2. Kozuka, M., Sawada, T., Kasahara, F., Mizuta, E., Amano, T., Komiya, T. and Goto, M. (1982) *Chem. Pharm. Bull.* **30**, 1952.
3. Murata, M., Yamakoshi, Y., Homma, S., Arai, K. and Nakamura, Y. (1992) *Biosci. Biotech. Biochem.* **56**, 2062.
4. Osawa, K., Yasuda, H., Maruyama, T., Morita, H., Takeya, K. and Itokawa, H. (1992) *Chem. Pharm. Bull.* **40**, 2970.
5. Osawa, K., Yasuda, H., Maruyama, T., Morita, H., Takeya, K. and Itokawa, H. (1994) *Chem. Pharm. Bull.* **42**, 922.
6. Onogi, A., Osawa, K., Yasuda, H., Sakai, A., Morita, H. and Itokawa H. (1993) *Shoyakugaku Zasshi* **47**, 423.