

13-EPI-HOMOVERRUCOSANE DERIVATIVES AND OTHER DITERPENES FROM *PLAGIOCHILA* (HEPATICAE)*

SUSANNE VALCIC,† VOLKER HUCH,‡ MICHAEL VEITH,‡ and HANS BECKER§

Institut für Pharmakognosie und Analytische Phytochemie and ‡Institut für Anorganische Chemie der Universität des Saarlandes, D-66041 Saarbrücken, Germany; †Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, Arizona 85721, U.S.A.

(Received in revised form 16 February, 1995)

Key Word Index—*Plagiochila cristata*; *Plagiochila adianthoides*; Jungermanniales; Hepaticae; crystal structure; 13-epi-homoverrucosane-type diterpenes; fusicogigantone-type diterpenes.

Abstract Four new 13-epi-homoverrucosane-type diterpenes: 13-epi-homoverrucosan-5 β ,6 β -diol **2**; 13-epi-homoverrucosan-5 β ,6 β -diol-8-one **3**; 13-epi-homoverrucosan-6 β -ol-5-one **4**; 13-epi-homoverrucosan-5 β ,6 β ,8 β -triol **5**, along with the known 13-epi-homoverrucosan-5 β -ol **1** and two known fusicoccane-type diterpenes, fusicogigantone **A** **6** and **B** **7**, were isolated from *Plagiochila cristata* collected from the wild. Only the two fusicoccane-type diterpenes were isolated from *Plagiochila adianthoides* grown in axenic culture. All structures were elucidated by spectral data.

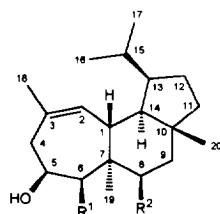
INTRODUCTION

Verrucosane-type diterpenes (verrucosane-, neoverrucosane-, homoverrucosane-, 13-epi-neoverrucosane- and 13-epi-homoverrucosane-type diterpenes) are distributed in *Schistochila* [1, 2], *Mylia* [3-9], *Gyrothrya* [10], *Scapania* [11] and *Plagiochila* [12], morphologically different genera of the Hepaticae. To our knowledge, this type of diterpene has not been reported in higher plants. Only one 13-epi-neoverrucosane-type diterpene alcohol was previously isolated from *Plagiochila* [12], a genus of the Jungermanniales (Hepaticae). More than 1,000 *Plagiochila* species are known in the world and are mainly distributed in the tropics. *Plagiochila cristata* (Sw.) Lindenb. was collected in Cundinamarca, Colombia, and *Plagiochila adianthoides* (Sw.) Dum. was originally collected in Panamá. Due to the difficulties in obtaining sufficient plant material from its natural habitat, an axenic culture of *P. adianthoides* was used for this investigation. In this paper we report the isolation and characterization of diterpenes of *P. cristata* collected in the wild and *P. adianthoides* grown in axenic culture.

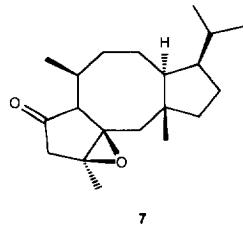
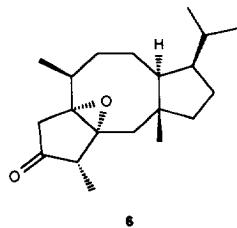
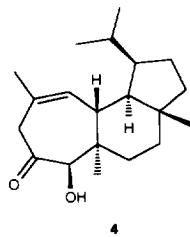
RESULTS AND DISCUSSION

Air-dried plant material from the Colombian liverwort *P. cristata* was exhaustively extracted with diethyl ether.

The evaporated extract was chromatographed by vacuum liquid chromatography (VLC) [13] and separated into six fractions. The 13-epi-homoverrucosane-containing fractions were further purified by a combination of VLC, Sephadex LH-20 chromatography and HPLC, which resulted in the isolation of 13-epi-homoverrucosan-5 β -ol (**1**), 13-epi-homoverrucosan-5 β ,6 β -diol (**2**), 13-epi-homoverrucosan-5 β ,6 β -diol-8-one (**3**), 13-epi-homoverrucosan-6 β -ol-5-one (**4**), and 13-epi-homoverrucosan-5 β ,6 β ,8 β -triol (**5**).


The spectral and physical data of **1**, which was obtained as crystalline needles, were in agreement with those of 13-epi-homoverrucosan-5 β -ol, previously isolated from the New Zealand liverwort *Schistochila nobilis* [1].

Compound **2** was obtained as a colourless, oily substance. The Cl^+ mass spectrometry $[\text{M} + \text{H}]^+$ at m/z 307 corresponded to the molecular formula $\text{C}_{20}\text{H}_{34}\text{O}_2$. The IR spectrum, ^1H and ^{13}C NMR spectral data were similar to those of 13-epi-homoverrucosan-5 β -ol (**1**). The IR absorbance at 3426 cm^{-1} , the ^{13}C NMR signals of two tertiary carbons at $\delta_c = 67.5$ (C-5) and $\delta_c = 82.2$ (C-6), along with the ^1H resonances at $\delta_H = 3.78$ (*dt*, $J = 2.3, 11.8\text{ Hz}$, H-5) and $\delta_H = 3.45$ (*s(br)*, H-6) indicated the presence of two secondary hydroxyl groups. Besides two tertiary methyl groups ($\delta_H = 0.84, \delta_H = 0.86$, both *s*, H-19/20), the presence of an isopropyl group (1337, 1365 cm^{-1} , $\delta_H = 0.78, 0.79$, both *d*, $J = 6.6\text{ Hz}$, H-16/17), a vinylic methyl group ($\delta_H = 1.75$, *s*, H-18) and a vinylic proton ($\delta_H = 5.16$, *d(br)*, $J = 4.8\text{ Hz}$, H-2) were confirmed by the IR and ^1H NMR spectroscopic data. The locations of the two hydroxyl groups were estab-




*Publication Nr. 88 of "Arbeitskreis Biologie und Chemie der Moose".

†Present address.

§Author to whom correspondence should be addressed.

1 $R^1 = H; R^2 = H$
 2 $R^1 = OH; R^2 = H$
 6 $R^1 = OH; R^2 = OH$

lished by 2D¹H-¹H COSY and double resonance examinations. The vinylic methyl group H-18 ($\delta_H = 1.75, s$) showed a long-range coupling to H-4 β ($\delta_H = 2.98, t, J = 11.8$ Hz). H-4 β also showed a coupling to H-4 α

($\delta_H = 1.64, dd, J = 11.8$ Hz) and a coupling to H-5 ($\delta_H = 3.78, dt, J = 2.3, 11.8$ Hz). The coupling constant of H-4 β indicated a location geminal to H-4 α and vicinal to H-5. H-5 further showed coupling to H-4 α . The coupling constant for H-4 α could not be determined. The ¹H-¹H COSY also exhibited a very small coupling between H-5 and H-6 ($\delta_H = 3.45, s(br)$). The shift values for H-5 and H-6 prove that the hydroxyl groups are located at C-5 and C-6. The α -configuration of both H-5 and H-6 was indicated by NOE effects between H-5 and α -standing methyl group H-19 and between H-5 and H-6 (Fig. 1). Irradiation of H-5 gave a clear enhancement of H-6 (4%) and of the methyl signal H-19 (6%). The coupling constant $J = 13.3$ Hz of the coupling between H-14 and β -configured H-1 indicated a diaxial coupling between these protons; hence, H-14 is α -configured. NOE effects between H-13 and H-14 (3%), as well as between H-13 and H-2 (7%) were due to the α -configuration of H-13 (Fig. 1). Thus, the structure of **2** was elucidated as (+)-13-epi-homoverrucosan-5 β ,6 β -diol.

The molecular formula of **3**, a colourless substance with oily consistency, was confirmed as C₂₀H₃₂O₃ by HRMS ([M⁺] *m/z* 320.2341). The ¹H and ¹³C NMR data indicated another homoverrucosane-type diterpene. In addition to the absorption of hydroxyl and isopropyl groups (3447, 1385, 1375 cm⁻¹), the IR spectrum showed the absorption of a carbonyl group (1699 cm⁻¹), which was confirmed by the ¹³C signal at $\delta_c = 216.6, s$. The ¹³C NMR signals of two tertiary carbons ($\delta_c = 66.6, \delta_c = 76.5$) are in agreement with two secondary hydroxyl groups in the molecule. Their locations at C-5 and C-6

Table 1. ¹H NMR spectral data of compounds **2-5**

H	2	3	4	5
1	2.86 <i>dd</i> (4.8, 13.3)	3.29 <i>dd</i> (6.0, 13.0)	2.42 <i>dd</i> (7.4, 12.4)	3.71 <i>m</i>
2	5.16 <i>d</i> (<i>br</i>) (4.8)	5.22 <i>d</i> (<i>br</i>) (6.0)	5.53 <i>d</i> (<i>br</i>) (7.4)	5.35 <i>s</i> (<i>br</i>)
4 α	1.64 <i>dd</i> (11.8,*)	1.77 <i>dd</i> (2.7, 13.5)	2.62 <i>d</i> (<i>br</i>) (19.0)	3.71 <i>m</i>
4 β	2.98 <i>t</i> (11.8,)	2.92 <i>dd</i> (11.8, 13.5)	3.47 <i>d</i> (19.0)	2.09 <i>dd</i> (5.0, 11.3)
5	3.78 <i>dt</i> (2.3, 11.8)	3.56 <i>dt</i> (2.5, 11.8)	—	4.16 <i>d</i> (<i>br</i>) (11.3)
6	3.45 <i>s</i> (<i>br</i>)	4.28 <i>s</i> (<i>br</i>)	4.07 <i>s</i>	4.46 <i>s</i>
8 α	1.42 <i>m</i>	—	1.21-1.72 <i>m</i>	4.06 <i>s</i> (<i>br</i>)
8 β	2.26 <i>dt</i> (4.1, 13.8)	—	1.21-1.72 <i>m</i>	—
9 α	1.29 <i>dt</i> (3.6, 13.8)	2.48 <i>d</i> (12.9)	1.21-1.72 <i>m</i>	1.92 <i>dd</i> (2.3, 13.7)
9 β	0.91 <i>dt</i> (3.3, 13.8)	2.24 <i>d</i> (12.9)	1.21-1.72 <i>m</i>	1.67 <i>m</i>
11 α	1.10 ^a <i>m</i>	1.36 <i>m</i>	1.21-1.72 <i>m</i>	1.10-2.10 <i>m</i>
11 β	1.45 ^a <i>m</i>	1.52 <i>m</i>	1.21-1.72 <i>m</i>	1.10-2.10 <i>m</i>
12 α	1.48 ^b <i>m</i>	1.58 <i>m</i>	1.21-1.72 <i>m</i>	1.10-2.10 <i>m</i>
12 β	1.66 ^b <i>m</i>	1.76 <i>m</i>	1.21-1.72 <i>m</i>	1.10-2.10 <i>m</i>
13	1.98 <i>m</i>	2.18 <i>m</i>	1.99 <i>m</i>	2.02 <i>m</i>
14	1.49 <i>m</i>	2.14 <i>dd</i> (2.7, 13.0)	1.69 <i>m</i>	1.62 <i>m</i>
15	1.79 <i>m</i>	1.91 <i>m</i>	1.72 <i>m</i>	1.98 <i>m</i>
16	0.78 ^c <i>d</i> (6.6)	0.80 ^a <i>d</i> (6.8)	0.72 ^a <i>d</i> (6.8)	0.89 ^a <i>d</i> (6.4)
17	0.79 ^c <i>d</i> (6.6)	0.82 ^a <i>d</i> (6.8)	0.76 ^a <i>d</i> (6.8)	0.98 ^a <i>d</i> (6.4)
18	1.75 <i>s</i>	1.80 <i>s</i>	1.80 <i>s</i>	1.83 <i>s</i>
19	0.84 <i>s</i>	0.98 <i>s</i>	1.02 <i>s</i>	0.95 ^b <i>s</i>
20	0.86 <i>s</i>	0.78 <i>s</i>	0.78 <i>s</i>	1.33 ^b <i>s</i>

^{a,b,c} The assignment may be interchanged.

*Coupling constant could not be determined.

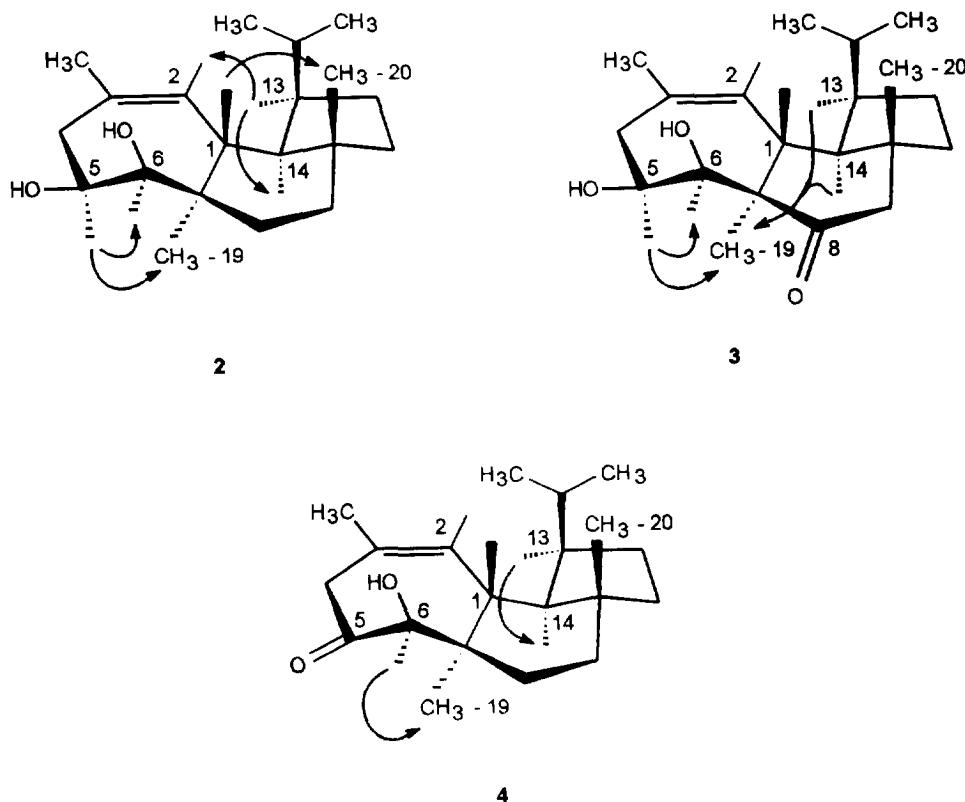


Fig. 1. NOE interactions of compounds 2-4.

were established by comparing the NMR data of **3** with those of **2**. The location of the carbonyl group in position 8 was determined by close examination of the 2D ^1H - ^1H COSY spectrum. The protons H-9 α + β ($\delta_{\text{H}} = 2.48, 2.24$, both *d*, $J = 12.9$ Hz, H-9 α + β) in vicinal position to the carbonyl group showed a long-range coupling to the methyl group H-20 ($\delta_{\text{H}} = 0.78$, *s*). The methyl protons H-20 also showed a long-range coupling to H-11 α + β ($\delta_{\text{H}} = 1.36, 1.52$, both *m*, H-11 α + β). The 2J and 3J connectivities of the protons located on the six-membered and the five-membered ring were as expected for the location of the carbonyl group in position 8. The fact that the proton H-14 of **3** experienced a downfield shift compared with H-14 in **2**, which is due to the anisotropic deshielding effect of the carbonyl group, confirmed this location. NOE effects between H-5 and H-6 (5%) and between H-5 and H-19 (4%) were due to the β -configuration of both hydroxyl groups on the seven-membered ring (Fig. 1). For the investigation of configuration at C-13 it was not possible to irradiate only H-13, due to the overlapping signals of H-13 and H-14. Irradiation of both H-13 and H-14 showed an effect on the α -standing methyl group H-19 (3%) and no effect on both the β -standing H-1 and the methyl group H-20. Therefore, the isopropyl group has to be β -positioned on C-13. On the basis of these examinations, the structure of **3** was established as (−)-13-epi-homoverrucosan-5 β ,6 β -diol-8-one.

Compound **4**, also obtained as an oil, showed an IR spectrum indicating a hydroxyl, an isopropyl and a carbonyl group. The EI mass spectrum showed $[\text{M}]^+$ at *m/z* 304, corresponding to the molecular composition $\text{C}_{20}\text{H}_{32}\text{O}_2$. Thus, compound **4** possessed only one hydroxyl group and one carbonyl group. The 2J and 3J connectivities of H-9 α + β and H-8 α + β as well as their 4J couplings to H-20 or H-19 indicated that the carbonyl function was not located on the six-membered ring as in **3**. The geminal protons H-4 α ($\delta_{\text{H}} = 2.62$, *d* (*br*), $J = 19$ Hz) and H-4 β ($\delta_{\text{H}} = 3.47$, *d*, $J = 19$ Hz) of **4**, when compared to those in **3**, showed a reduction of their multiplicity from a doublet to a singlet. H-4 β showed a long-range coupling to the vinylic methyl group H-18, as in **3**. The singlet corresponding to H-6 was narrower than that in **3**. Based on this evidence, we assigned the carbonyl to the position 5 and the hydroxyl group to the position 6. The α -configuration of H-6 was concluded from the NOE effect between H-6 and α -standing methyl group H-19 (5%) (Fig. 1). The α -configuration of H-14 resulted from the coupling constant ($J = 12.4$ Hz), which indicated a diaxial coupling between H-14 and β -configured H-1. The α -configuration of H-13 was concluded from the NOE effect between H-13 and α -standing H-14 (6%) (Fig. 1). Thus, the structure of **4** was elucidated as (−)-13-epi-homoverrucosan-6 β -ol-5-one.

Compound **5** precipitated from the most polar fraction of the diethyl ether extract. The CI mass spectrum

showed the $[M + H]^+$ ion peak at m/z 323, which was in agreement with the molecular formula $C_{20}H_{34}O_3$. The 1H and ^{13}C NMR spectroscopic data indicated another homoverrucosane-type diterpene. The signals of three tertiary carbons at $\delta_c = 67.7, 83.5$ and 80.3 were in agreement with three secondary hydroxyl groups in the molecule. The locations of two hydroxyl groups in positions 5 and 6 were determined by comparison of the NMR data of **5** with those of **2** and by 1H - 1H COSY examination, which revealed the same couplings for the protons of the seven-membered ring in **5** as for **2**. This experiment, however, was consistent with the location of the third hydroxyl group in either position 8 or position 9. In order to establish the position of the third hydroxyl group and the stereochemistry of **5** including its relative configuration, X-ray measurements were carried out (Fig. 2). On the basis of these spectral and physical data the relative structure of **5** was established as (−)-13-epi-homoverrucosan-5 β ,6 β ,8 β -triol.

Both known fusicoccane diterpenes, fusicogigantone A (**6**) and fusicogigantone B (**7**), previously described in *Pleurozia gigantea* [14], were isolated from fraction 2 by a combination of Sephadex LH-20 chromatography and HPLC and identified by comparison of their 1H , ^{13}C NMR and mass-spectrometry data with those in [14]. These compounds were also isolated in this study from the methylene chloride extract of *Plagiochila adianthoides*, which was grown in axenic culture.

EXPERIMENTAL

General. Mps: uncorr.; solvents used for spectral measurements: CD_3Cl , pyridine- d_5 . Measurements of all NMR spectra were carried out on a Bruker AM 400 NMR spectrometer [1H NMR (400 MHz), ^{13}C NMR (100 MHz)]. Assignments of 1H NMR were confirmed by 1H - 1H COSY, double resonance and NOE examinations. Assignments of ^{13}C NMR were confirmed by DEPT-spectra and comparison with ^{13}C NMR data of **1**. IR: KBr, Perkin Elmer 2000. CI-MS: 120 eV isobutane, Finnigan MAT TSQ 70. EI-MS: 70 eV, Finnigan MAT

90. X-Ray measurements were carried out on a Siemens Stoe AED2 diffractometer.

Plant material. *Plagiochila cristata* was collected in May 1991 in Colombia (Parque Montañas de Chicaque, department Cundinamarca). *Plagiochila adianthoides* was collected in January 1988 in Panamá (summit area of 'Cerro Jefe', Parque Nacional Charges, Provincia Panamá).

Axenic culture. The culture was grown as a surface culture in 200 ml flasks on modified Gamborg B5 medium [15] under constant illumination (2000 lux) at 20 (± 1.5). The flasks were closed with cellulose stoppers covered with aluminum foil. Each flask contained 80 ml medium.

Extraction and isolation. Air-dried and powdered plant material (120 g) of *P. cristata* was exhaustively extracted with Et_2O . The evapd extract was applied to VLC on silica gel (Si 60, 15 μm) with an *n*-hexane-EtOAc gradient to yield 6 frs. 13-Epi-homoverrucosan-5 β -ol (**1**) (70 mg) and 13-epi-homoverrucosan-6 β -ol-5-one (**4**) (12 mg) were obtained from fr. 4 by VLC (silica gel Si 60, 15 μm , *n*-hexane-EtOAc gradient) and HPLC (LiChrospher Si 60, 5 μm *n*-hexane-EtOAc, 89:11). VLC of fr. 5 (RP-18, 20–45 μm , MeOH-H₂O, 8:2) afforded 13-epi-homoverrucosan-5 β ,6 β -diol (**2**) (190 mg). Further separation of fr. 5 with HPLC (LiChropher RP-18, 5 μm , MeOH-H₂O, 85:15) yielded more **2** (270 mg) and HPLC (LiChropher RP-18, 5 μm , MeOH-H₂O, 75:25) afforded 13-epi-homoverrucosan-5 β ,6 β -diol-8-one (**3**) (8 mg). Fr. 6 was chromatographed on Sephadex LH-20 using CH_2Cl_2 -MeOH (1:1) as eluent. The ppt was washed with *n*-hexane to yield 30 mg 13-epi-homoverrucosan-5 β ,6 β ,8 β -triol (**5**). Fusicogigantone A (**6**) (20 mg) and fusicogigantone B (**7**) (45 mg) were obtained from fr. 2 by CC on Sephadex LH-20 (CH_2Cl_2 -MeOH, 1:1) and HPLC (LiChrospher Si 60, 5 μm , *n*-hexane-EtOAc, 98:2).

Air-dried and powdered plant material (70 g) of axenic culture from *P. adianthoides* was exhaustively extracted with CH_2Cl_2 . The evapd extract was applied to VLC on silica gel (Si 60, 15 μm) with an *n*-hexane-EtOAc gradient to yield 7 frs. Frs 2 and 3 were chromatographed on Sephadex LH-20 (CH_2Cl_2 -MeOH, 1:1) Fr. 2 was further separated with HPLC (LiChrospher Si 60, 5 μm , *n*-hexane-EtOAc, 97:3) to obtain fusicogigantone B (**7**) (1 mg). Fusicogigantone A (**6**) (0.5 mg) was obtained from fr. 3 by further HPLC (LiChrospher Si 60, 5 μm , *n*-hexane-EtOAc, 92.5:7.5).

Compound 2. $[\alpha]_D + 20.3^\circ$ (c 0.2; $CHCl_3$); CI $^+$ MS m/z : 307 [$M + H]^+$ ($C_{20}H_{34}O_2$); IR ν_{max} cm $^{-1}$: 3426, 2939, 1450, 1377, 1365, 1034, 995, 938; ^{13}C NMR ($CDCl_3$) δ : 32.5 (*d*, C-1), 132.9 (*d*, C-2), 130.6 (*s*, C-3), 40.5 (*t*, C-4), 67.5 (*d*, C-5), 82.2 (*d*, C-6), 41.8 (*s*, C-7), 32.5 (*t*, C-8), 34.4 (*t*, C-9^a), 40.5 (*s*, C-10), 36.8 (*t*, C-11^a), 24.9 (*t*, C-12), 44.7 (*d*, C-13), 51.7 (*d*, C-14), 29.4 (*d*, C-15), 21.3 (*q*, C-16^b), 23.8 (*q*, C-17^b), 25.4 (*q*, C-18), 18.6 (*q*, C-19^c), 19.6 (*q*, C-20^c). (^{a,b,c}Assignments interchangeable.)

Compound 3. $[\alpha]_D - 28.0^\circ$ (c 0.3; $CHCl_3$); HRMS m/z : 320.2341 [$M + H]^+$; $C_{20}H_{32}O_3$ requires 320.2351; IR ν_{max} cm $^{-1}$: 3447, 2953, 2874, 1699, 1457, 1385, 1375, 1039, 1011, 961; ^{13}C NMR ($CDCl_3$) δ : 34.3 (*d*, C-1), 129.0

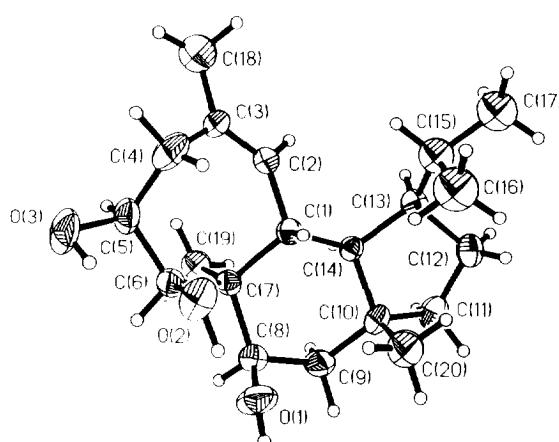


Fig. 2. Schakal plot [18] of compound **5**.

(d, C-2), 134.1 (s, C-3), 39.7 (t, C-4), 66.6 (d, C-5), 76.5 (d, C-6), 55.1 (s, C-7), 216.6 (s, C-8), 53.7 (t, C-9), 43.6 (s, C-10), 35.4 (t, C-11), 24.6 (t, C-12), 44.2 (d, C-13), 50.7 (d, C-14), 28.6 (d, C-15), 20.6 (q, C-16^a), 23.8 (q, C-17^a), 25.0 (q, C-18), 17.1 (q, C-19^b), 19.8 (q, C-20^b). (^{a,b,c}Assignments interchangeable.)

Compound 4. $[\alpha]_D = 37.7^\circ$ (c 0.3; CHCl_3); $\text{EI}^+ \text{MS } m/z$ (rel. int.): 304 [M^+] (15), 261 (4), 243 (8), 232 (8), 191 (20), 161 (13), 149 (21), 109 (28), 95 (38), 81 (34), 69 (33), 55 (50), 43 (100), 41 (71); $\text{IR } \nu_{\text{max}} \text{ cm}^{-1}$: 3520, 2928, 1702, 1457, 1435, 1385, 1375, 1062; $^{13}\text{C NMR}$ (CDCl_3) δ : 40.3 (d, C-1), 130.5 (d, C-2), 128.3 (s, C-3), 46.1 (t, C-4), 211.0 (s, C-5), 84.2 (d, C-6), 48.6 (s, C-7), 27.8 (t, C-8^a), 36.5 (t, C-9^a), 41.4 (s, C-10), 40.5 (t, C-11^a), 27.7 (t, C-12^a), 44.8 (d, C-13), 49.4 (d, C-14), 30.1 (d, C-15), 21.3 (q, C-16^b), 23.4 (q, C-17^b), 23.9 (q, C-18), 18.2 (q, C-19^c), 19.8 (q, C-20^c). (^{a,b,c}Assignments interchangeable.)

Compound 5. Mp 251–254°C; $[\alpha]_D = 19.5^\circ$ (c 0.13; $\text{C}_5\text{H}_5\text{N}$); $\text{Cl}^+ \text{MS } m/z$: 323 [$\text{M} + \text{H}$]⁺ ($\text{C}_{20}\text{H}_{34}\text{O}_3$); $^{13}\text{C NMR}$ (pyridine-*d*₅) δ : 32.1 (d, C-1), 132.6 (d, C-2), 132.1 (s, C-3), 42.0 (t, C-4^a), 67.7 (d, C-5), 83.5 (d, C-6), 45.4 (s, C-7), 80.3 (d, C-8), 45.3 (t, C-9^a), 40.3 (s, C-10), 36.1 (t, C-11), 25.7 (t, C-12), 45.6 (d, C-13), 52.7 (d, C-14), 30.8 (d, C-15), 22.2 (q, C-16^b), 23.1 (q, C-17^b), 26.4 (q, C-18^c), 19.7 (q, C-19^c), 24.3 (q, C-20^c). (^{a,b,c}Assignments interchangeable.)

X-Ray analysis of 5. Experimental details of the X-ray diffraction analysis of **5** are listed in Table 2. The structure was solved using direct methods (SHELXS-86) [16] and refined by full-matrix least-squares analysis on F^2 (SHELXL) [17] for all independent reflections with anisotropic temperature factors for all oxygens and C-1 to C-14 to a final *R* of 0.055. The hydrogen atoms are treated as rigid groups with a fixed C–H distance of 0.098 nm. Goodness of fit *S* = 0.979 of F^2 values for 195

Table 2. Crystallographic data and data collection characteristics for the X-ray analysis of compound **5**

Crystal data	
Molecular formula	$\text{C}_{20}\text{H}_{34}\text{O}_3$
<i>M</i> _r	322.47
Crystal system	Orthorhombic
Space group	$P2_12_12_1$
Cell dimensions (nm) <i>a</i>	0.6612(3) $\alpha = 90^\circ$
<i>b</i>	1.449(8) $\beta = 90^\circ$
<i>c</i>	1.8839(10) $\gamma = 90^\circ$
Volume (nm ³)	1.805(2)
<i>Z</i>	4
Density (Mg m ⁻³)	1.186
Absorption coefficient (mm ⁻¹)	0.077
<i>F</i> (000)	712
Crystal size (mm)	0.3 × 0.2 × 0.1
Data collection: Siemens Stoe AED2	
Graphite monochromated MoK α ;	
ω/Θ scans:	(3° < 2 Θ < 48°)
Reflections collected	1634
Independent reflections	1632 ($R_{\text{int}} = 0.0631$)
Observed reflections	1196 ($I > 2\sigma_I$)
Parameters refined	195
Final <i>R</i> ($I > 2\sigma_I$)	0.055

parameters. The absolute structure could not be determined. The atomic co-ordinates for this work are available on request from the Director of the Cambridge Crystallographic Data Centre, University Chemical Laboratory.

Acknowledgements—The authors thank Dr S. R. Gradstein (Utrecht), Dr E. Linares (Utrecht), Dr J. Spörle (Saarbrücken) and Dr H. Inoue (Tokyo) for the collection and identification of the plant material. We also thank Dr J. Spörle (Saarbrücken) for establishing the axenic culture of *P. adianthoides* and Dr J. Zapp for running the NMR spectra. S.V. gratefully acknowledges the financial support by the 'Graduiertenstipendium des Saarlandes'.

REFERENCES

- Asakawa, Y., Masuya, T., Tori, M. and Fukuyama, Y. (1988) *Phytochemistry* **27**, 3509.
- Wu, C.-L. and Chang S.-J. (1988) *J. Hattori Bot. Lab.* **64**, 151.
- Matsuo, A., Nozaki, H., Nakayama, M., Hayashi, S. and Takaoka, D. (1978) *J. Chem. Soc. Chem. Commun.* 198.
- Hayashi, S., Matsuo, A., Nozaki, H., Nakayama, M., Takaoka, D. and Hiroi, M. (1978) *Chem. Letters* 953.
- Takaoka, D. (1979) *J. Chem. Soc. Perkin Trans. I*, 2711.
- Matsuo, A., Nozaki, H., Nakayama, M., Takaoka, D. and Hayashi, S. (1980) *J. Chem. Soc. Chem. Commun.* 822.
- Nozaki, H., Matsuo, A., Kushi, Y., Nakayama, M., Hayashi, S. and Takaoka, D. and Kamijo, N. (1980) *J. Chem. Soc. Perkin Trans. II*, 763.
- Asakawa, Y. (1982) in *Progress in the Chemistry of Organic Natural Products* (Herz, W., Grisebach, H. and Kirby, G. W., eds), Vol. 42, p. 1, Springer, Wien.
- Harrison, L. J., Tori, M. and Asakawa, Y. (1986) *J. Chem. Res. (S)* 212.
- Kubo, I., Matsumoto, A., Hirotsu, K., Noaki, H. and Wood, F. W. (1984) *J. Org. Chem.* **49**, 4644.
- Matsuo, A., Atsumi, K., and Nakayama, M. (1983) *The 27th Symposium of the Chemistry of Terpenes, Essential Oils and Aromatics of Japan*, p. 306. Nagasaki, October, Symposium papers.
- Fukuyama, Y., Masuya, T., Tori, M., Kido, M., Wakamatsu, M. and Asakawa, Y. (1988) *Phytochemistry* **27**, 1797.
- Pelletier, S. W., Chokshi, H. P. and Desai, H. K. (1986) *J. Nat. Prod.* **49**, 892.
- Asakawa, Y., Lin, X., Tori, M. and Kondo, H. (1990) *Phytochemistry* **29**, 2597.
- Gamborg, O. L., Miller, R. A. and Ojima, K. (1968) *Exp. Cell Res.* **50**, 151.
- Sheldrick, G. M. (1990) Program for Crystal Structure Determination, version 1990.
- Sheldrick, G. M. (1993) Program for Crystal Structure Determination, version 1993.
- Keller, E. (1988) Program Schakal. University of Freiburg, Germany.