

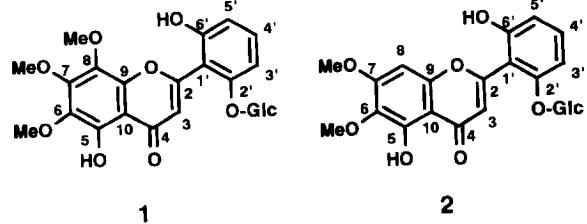
TWO FLAVONE 2'-GLUCOSIDES FROM *SCUTELLARIA BAICALENSIS*

KANJI ISHIMARU,* KAZUTAKA NISHIKAWA, TOSHIO OMOTO,† IWAO ASAI,‡ KUNITOSHI YOSHIHIRA‡
and KOICHIRO SHIMOMURA§

Department of Applied Biological Sciences, Faculty of Agriculture, Saga University, 1 Honjo, Saga 840, Japan; †San-Ei Gen F. F. I. Inc., 1-1-11 Sanwa, Toyonaka, Osaka 561, Japan; ‡Division of Applied Sciences, Graduate School of Integrated Science and Art, University of East Asia, 2-1 Ichinomiya-Gakuen, Shimonoseki 751, Japan; §Tsukuba Medicinal Plant Research Station, National Institute of Health Sciences, 1 Hachimandai, Tsukuba, Ibaraki 305, Japan

(Received in revised form 7 February 1995)

Key Word Index—*Scutellaria baicalensis*. Labiate; flavones; 5,2',6'-trihydroxy-6,7,8-trimethoxyflavone 2'-glucoside; 5,2',6'-trihydroxy-6,7-dimethoxyflavone 2'-glucoside.


Abstract—Two new flavone glucosides, 5,2',6'-trihydroxy-6,7,8-trimethoxyflavone 2'-*O*-glucoside and 5,2',6'-trihydroxy-6,7-dimethoxyflavone 2'-*O*-glucoside were isolated from the aqueous methanol extract of the roots of *Scutellaria baicalensis*. From the extract, seven phenolics, 5,7,2',6'-terahydroxyflavone, 5,7,2',5'-tetrahydroxy-8,6'-dimethoxyflavone, skullcapflavone II, baicalin, baicalin methyl ester, wogonin 7-glucuronide and 3,5,7,2',6'-pentahydroxyflavanone were also isolated.

INTRODUCTION

Scutellaria baicalensis Georgi (Labiatae) is one of the important medicinal herbs widely used for the treatment of various inflammatory diseases, hepatitis, tumors and diarrhea in East Asian countries such as China, Korea and Japan [1]. This plant has been reported to contain a large number (over 40) of flavonoids, frequently found as the glucuronides, and other constituents such as phenethyl alcohols, sterols, essential oils and amino acids [2]. In the present flavonoid study of *S. baicalensis* two new flavone glucosides (**1** and **2**) were isolated from the roots and their structures determined by UV, ¹H and ¹³C NMR spectral evidence. Seven known phenolics (**3-9**) were also isolated.

RESULTS AND DISCUSSION

By the combination of Sephadex LH-20, MCI GEL CHP 20P, silica gel and Bondapak C18 Porasil B column chromatography nine phenolics (**1-9**) were isolated from the aqueous methanol extract of the roots of *S. baicalensis*. Among these, seven were identified as the known compounds: 5,7,2',6'-tetrahydroxyflavone (**3**) [3], 5,7,2',5'-tetrahydroxy-8,6'-dimethoxyflavone (**4**) [4], skullcapflavone II (**5**) [5], baicalin (**6**) [6], baicalin methyl ester (**7**) [3], wogonin 7-*O*-glucuronide (**8**) [6] and 3,5,7,2',6'-pentahydroxyflavanone (**9**) [7] by the analyses of their ¹H and ¹³C NMR spectral data.

1

2

Compound **1**, obtained as pale yellow amorphous powder, exhibited $[M-H]^-$ peak at *m/z* 521.1292 ($C_{24}H_{25}O_{13}$) in the high resolution negative SIMS. The ¹H NMR spectrum (Table 1) of **1** showed three methoxyl (δ 3.81, 3.82 and 4.00), a non-coupled olefinic (δ 6.35), ABC-type aromatic (δ 6.69, 6.79 and 7.25) and chelated hydroxyl (δ 12.70) proton signals. This signal pattern resembled that of **5** which has 5(OH), 6,7,8,2',6'-substituted flavone structure. In the ¹H NMR spectrum of **1**, one anisotropic proton (δ 5.00) signal was also observed, indicating the presence of one sugar moiety. The ¹³C NMR spectrum of **1** (Table 2) exhibited the signals arising from one flavone (15 carbons, C-2 ~ 10 and 1' ~ 6') and a hexose (δ 63.0, 71.7, 74.9, 78.3, 78.4 and 107.9) whose chemical shifts were in good agreement with those of β -D-glucose.

The ¹H-¹H NOESY spectrum of **1** revealed a NOE correlation cross-peak between the glucose C-1 and C-3' (B-ring) protons suggesting that the glucose moiety was linked to the C-2' position. In the NOESY spectrum, there was no cross peak between three methoxyl and

*Author to whom correspondence should be addressed.

Table 1. ^1H NMR spectral data of **1** and **2** at 270 MHz (δ values) (in acetone- d_6 + D_2O)

H	1	2
3	6.35 1H, s	6.35 1H, s
8	—	6.41 1H, s
3'	6.79 1H, d (8)	6.74 1H, d (8)
4'	7.25 1H, t (8)	7.22 1H, t (8)
5'	6.69 1H, d (8)	6.67 1H, d (8)
Glucose		
1	5.00 1H, d (7)	4.98 1H, d (7)
2	3.20–3.50 m	3.19–3.50 m
3	3.20–3.50 m	3.19–3.50 m
4	3.20–3.50 m	3.19–3.50 m
5	3.20–3.50 m	3.19–3.50 m
6	3.62 1H, dd (12, 6) 3.75 1H, dd (12, 2)	3.58 1H, dd (12, 6) 3.78 1H, dd (12, 2)
OMe	3.81 3H, s 3.82 3H, s 4.00 3H, s	3.85 6H, s
OH	12.70 1H, s	12.70 1H, s

Coupling constants (J in Hz) in parentheses.

aromatic (B-ring) protons suggesting that the methoxyl groups were attached to the A-ring. The presence of a characteristic signal for a chelated hydroxyl (δ 12.70, at C-5) in the ^1H NMR spectrum of **1** confirmed the positions of the three methoxyl groups at C-6, 7 and 8. The position of the hydroxyl group at C-5 was supported also by the bathochromic shift observed in the UV spectrum of **1** on the addition of AlCl_3 and $\text{AlCl}_3 + \text{HCl}$. From the combined spectral data above, **1** was concluded to be 5, 2',6'-trihydroxy-6,7,8-trimethoxyflavone 2'- O - β -D-glucopyranoside.

Compound **2**, a pale yellow amorphous powder, exhibited $[\text{M}-\text{H}]^-$ peak at m/z 491.1188 ($\text{C}_{23}\text{H}_{23}\text{O}_{12}$) in the high resolution negative SIMS. The ^1H NMR spectrum (Table 1) of **2** showed two methoxyl (δ 3.85, $\times 2$), an anomeric (δ 4.98), one olefinic (δ 6.35, s), one non-coupled (δ 6.41) and ABC-type (δ 6.67, 6.74 and 7.22) aromatic proton signals. The ^{13}C NMR spectrum (Table 2) of **2** also indicated the presence of two methoxyls, one D-glucose moiety and a 5,6,7,2',6'-substituted flavone.

The ^1H - ^1H NOESY spectrum of **2** showed two cross-peaks between glucose C-1 and C-3' protons and between the methoxyl and C-8 protons. This indicated the positions of the glucose and one of the methoxyl groups at C-2' and C-7, respectively. The configuration of the glucose C-1 was concluded to β from the J value (7 Hz) of the anomeric signal in the ^1H NMR spectrum of **2**. The characteristic signal of a chelated hydroxyl (δ 12.70, at C-5) in the ^1H NMR spectrum and bathochromic shift observed in the UV spectrum (on addition of AlCl_3 and $\text{AlCl}_3 + \text{HCl}$) suggested the presence of a free hydroxyl group at C-5 position. Therefore, **2** was characterized as 5,2',6'-trihydroxy-6,7-dimethoxyflavone 2'- O - β -D-glucopyranoside.

Table 2. ^{13}C NMR spectral data of **1** and **2** at 67.5 MHz (δ values) (in acetone- d_6 + D_2O)

C	1	2
2	163.2	163.4
3	113.9	113.6
4	184.5	184.1
5	150.7	151.6
6	136.5	130.1
7	154.3	159.9
8	133.6	96.8
9	148.3	157.6
10	108.4	105.7
1'	112.2	111.8
2'	157.8	158.0
3'	111.3	111.1
4'	133.7	133.7
5'	102.4	101.8
6'	158.1	158.2
Glucose		
1	107.9	107.2
2	74.9	74.5
3	78.3	77.7
4	71.7	71.0
5	78.4	77.9
6	63.0	62.5
OMe	61.5 62.5 63.1	57.3 62.3

Although several flavone glucosides have been characterised previously from *S. baicalensis*, **1** and **2** are the first in which the glucose moieties are connected to the B-ring.

EXPERIMENTAL

^1H and ^{13}C NMR were measured at 270 and 67.5 MHz, respectively, locked to the major deuterium resonance of the solvent $[(\text{CD}_3)_2\text{CO}, \text{C}_5\text{D}_5\text{N}$ and $(\text{CD}_3)_2\text{SO}]$.

Plant material. The roots of *Scutellaria baicalensis* were collected from the plants grown in the field at Tsukuba Medicinal Plant Research Station. Voucher specimens are deposited at Faculty of Agriculture, Saga University.

Extraction and isolation. Lyophilized roots (219 g) were mashed and extracted at room temp. with 60% aq. MeOH (750, 500, 450 and 400 ml). The extract, after concn under red. pres., was subjected to Sephadex LH-20 (4.5 \times 23 cm) CC and eluted first with H_2O with increasing amounts of MeOH and then with EtOH to afford six fractions (Frs 1–6). Fr. 1 was separated by Bondapak C18 Porasil B (H_2O -MeOH) and MCI GEL CHP 20P (H_2O -MeOH) CC to give **6** (185 mg), **7** (6 mg), and **8** (26 mg). Fr. 2 was separated by silica gel (CHCl_3 -MeOH) and Bondapak C18 Porasil B (H_2O -MeOH) CC to afford **1** (23 mg) and **2** (24 mg). Frs 3–6 were purified by silica gel (CHCl_3 -MeOH and/or CHCl_3 -EtOH) CC to

give **5** (189 mg) (from Fr. 3), **4** (78 mg) (from Fr. 4), **9** (161 mg) (from Fr. 5) and **3** (28 mg) (from Fr. 6).

5,2',6-Trihydroxy-6,7,8-trimethoxyflavone 2'-O-β-D-glucopyranoside (**1**). A pale yellow amorphous powder, $[\alpha]_D^{25}$ -14.6° (MeOH; c 0.1) ^1H NMR: see Table 1; ^{13}C NMR: see Table 2; High resolution negative SI MS m/z (rel. int): 521.1292 [M-H]⁻ (65), UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm (log ε): 268.0 (4.04); λ + AlCl₃ 397.0 (3.33), 279.5 (4.01); λ + AlCl₃/HCl 399.5 (3.33), 280.0 (4.02); λ + NaOAc 268.5 (4.08); + H₃BO₃ 268.0 (4.09) nm.

5,2',6-Trihydroxy-6,7-dimethoxyflavone 2'-O-β-D-glucopyranoside (**2**). A pale yellow amorphous powder, $[\alpha]_D^{25}$ - 5.6° (MeOH; c 0.2) ^1H NMR: see Table 1; ^{13}C NMR: see Table 2; High resolution negative SI MS m/z (rel. int): 491.1188 [M-H]⁻ (82), UV $\lambda_{\text{max}}^{\text{MeOH}}$ (log ε): 264.0 (4.44); + AlCl₃: 395.0 (3.83), 274.5 (4.47); + AlCl₃/HCl 396.0 (3.83), 274.5 (4.48); + NaOAc 264.0 (4.41); + H₃BO₃ 264.0 (4.42) nm.

Acknowledgements—This work was supported in part by a subsidy from the San-Ei Gen Foundation for Food

Chemical Research and by the Ministry of Health and Welfare, Science Research Fund Subsidy granted to the Japan Health Science Foundation.

REFERENCES

1. Chiang Su New Medical College (ed.) (1977) *Dictionary of Chinese Crude Drugs*, Shanghai Scientific Technological Publishers, Shanghai, p. 783.
2. Takido, M. (1987) *Gendaitoyoigaku* **8**, 50.
3. Tomimori, T., Miyaichi, Y. and Kizu H. (1982) *Yakugaku Zasshi* **102**, 388.
4. Tomimori, T., Miyaichi, Y., Imoto, Y., Kizu H. and Tanabe, Y. (1984) *Yakugaku Zasshi* **104**, 524.
5. Takido, M., Aimi, M., Takahashi, S., Yamanouchi, S., Torii, H. and Dohi, S. (1975) *Yakugaku Zasshi* **95**, 108.
6. Takido, M. (1973) *Taisha* **10**, 723.
7. Takagi, S., Yamaki, M. and Inoue, K. (1981) *Yakugaku Zasshi* **101**, 899.