

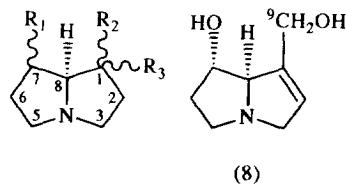
ESTER ALKALOIDS OF *HELIOTROPIUM BRACTEATUM*

AKONI J. LAKSHMANAN* and SINGARAM SHANMUGASUNDARAM

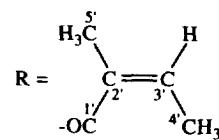
Department of Chemistry, Presidency College, Madras 600005, India

(Received 10 January 1995)

Key Word Index — *Heliotropium bracteatum*; Boraginaceae; pyrrolizidine ester alkaloids; helibracteinine; 1 β -hydroxymethyl-7 α -angelyloxy-8 α -pyrrolizidine-1 α -ol; helibracteatinine; 1 β -angelyloxy-1 β -hydroxymethyl-8 α -pyrrolizidine-1 α ,7 α -diol.


Abstract — Isolation and structure determination of the two new ester alkaloids of *Heliotropium bracteatum*, viz. helibracteinine and helibracteatinine, are described. Helibracteinine was formulated as 1 β -hydroxymethyl-7 α -angelyloxy-8 α -pyrrolizidine-1 α -ol and helibracteatinine as 1 β -angelyloxy-8 α -pyrrolizidine-1 α ,7 α -diol. Structures were established by spectrometry of the alkaloids and by hydrolysis to their necine bases.

INTRODUCTION


In a continuation of our studies [1-4] on the chemical constituents of *Heliotropium* species, we have reported the isolation and characterisation of a novel triol necine, helibractinecine [2] from *Heliotropium bracteatum* R.Br. (syn. *H. laxiflorum* Roth). Further examination of the ester alkaloid fraction led to the identification of helibracteinine and helibracteatinine.

RESULTS AND DISCUSSION

Fractionation of the alkaloids of *H. bracteatum* gave four fractions [2]. Fraction A was mainly composed of ester alkaloids. Chromatographic separation of fraction A over a column of neutral alumina led to the isolation of two minor gummy bases. Rechromatography over alkalinized silica gel columns afforded two gummy isomeric ester alkaloids, helibracteinine (**1**) and helibracteatinine (**2**). The mass spectra of **1** and **2** revealed their molecular formulae as C₁₃H₂₁NO₄ and the fragmentation patterns of both the alkaloids were identical to that of a monoester alkaloid derived from saturated triol necine [5]. Their IR spectra mainly consisted of hydroxyl and ester carbonyl groups. The mass spectral fragmentations showed that alkaloids **1** and **2** are esterified at different positions with a C-5-linked acid. Consistent with the molecular formulae deduced from their mass spectra the ¹H NMR spectra of **1** and **2** integrated for a total 21 protons each and their integral values were reduced by two upon the addition of D₂O indicating the presence of two free

	R ₁	R ₂	R ₃
1a	OR	OH	CH ₂ OH
1b	OH	OH	CH ₂ OR
1	- α OR	- α OH	- β CH ₂ OH
2	- α OH	- α OH	- β CH ₂ OR
3	- α OH	- α OH	- β CH ₂ OH
4	- β OH	- β OH	- α CH ₂ OH
5	- β OH	- α OH	- β CH ₂ OH
6	H	- β OH	- α CH ₂ OH
7	H	- α OH	- β CH ₂ OH

hydroxyl groups. The nature of the esterifying acid was established as angelic acid by the diagnostic signals and thus the two alkaloids are angelyl esters of a triol necine.

In ¹H NMR spectrum of helibracteinine (**1**), the H-7 signal resonated as a distinct quartet at δ 5.09. The absence of a proton at C-1 was established by the resonance signal of the H-8 proton which resonated as a doublet at δ 3.30. This information served to characterise helibracteinine as 1-hydroxymethyl-7-angelyloxy-pyrrolizidine-1-ol (**1a**) but excluded the stereochemistry. This assignment was consistent with the remaining signals of its ¹H NMR spectrum (Table 1). Acetylation of helibracteinine afforded a monoacetate. The ¹H NMR spec-

* Present address: Department of Chemistry, Government Arts College, Udhagamandalam, The Nilgiris, Tamil Nadu 643 002, India.

Table 1. ^1H NMR spectral data of compound, 1–3 (in $\text{CDCl}_3 + \text{D}_2\text{O}$, 270 MHz)

H	1	2	3 (in CDCl_3)
2u	1.80 <i>m</i>	1.85 <i>m</i>	1.63 dist. <i>q</i> (5.0, 5.8)
2d	2.10 <i>m</i> (8.6, 14)		
3 α	3.35 <i>m</i>	3.22 <i>m</i>	3.26 <i>m</i>
3 β	2.78 <i>m</i> (8.6, 11)	2.54 <i>m</i>	2.55 <i>dt</i> (5.8, 10.8)
5 α	3.20 <i>m</i> (7.6, 11)	3.22 <i>m</i>	3.26 <i>m</i>
5 β	2.60 <i>m</i> (7.6, 11)	2.54 <i>m</i>	2.52 <i>dt</i> (4.1, 9.6, 9.6)
6u	1.80 <i>m</i>	1.85 <i>m</i>	1.84 <i>m</i> (12)
6d		2.05 <i>m</i>	2.11 <i>m</i>
7	5.09 dist. <i>q</i> (5.5, 6)	4.08 dist. <i>q</i> (5.5, 6.5)	3.94 <i>q</i> (6.9, 6.9, 6.9)
8	3.30 <i>d</i> (6)	3.30 <i>d</i> (6.5)	3.12 <i>d</i> (6.9)
9u	3.64 <i>d</i> (12)	4.35 <i>d</i> (12)	3.79 <i>d</i> (10.6)
9d	3.84 <i>d</i> (12)	4.46 <i>d</i> (12)	3.84 <i>d</i> (10.6)
3'	6.12 <i>q</i> (7)	6.10 <i>q</i> (7)	
4' [†]	1.98 <i>d</i> (7)	1.99 <i>d</i> (7)	
5' [†]	1.88 <i>s</i>	1.91 <i>s</i>	
-OH			3.81 <i>br</i>

* Measured at 300 MHz with TMS as internal standard. Coupling constants all established by double irradiation, in Hz.

[†] Three proton intensity.

trum of this monoacetate clearly showed that it was a C-9 acetate as the two H-9 doublets ($J = 12$ Hz) at δ 3.64 and 3.84 in helibracteatinine were shifted downfield and resonated at δ 4.62. In the case of helibracteatinine (2) the H-9 protons resonated at δ 4.35 and 4.46 as doublets ($J = 12$ Hz) indicating the esterification at C-9. The resonance positions of other signals (Table 1) and mass spectral fragmentations also reinforced helibracteatinine as 9-angelyloxyethyl-pyrrolizidine-1,7-diol exclusive of stereochemistry (1b). To unravel the nature of the necine moiety, both the ester alkaloids were subjected to alkaline hydrolysis. These afforded the identical free necine, helibracteatininecine (3). On comparison of helibracteatininecine (3) with helibracteatinine (4), a free necine isolated from *H. bracteatum* [2] revealed that this necine (3) is a diastereoisomer of helibracteatinine (4) and its structure was elucidated.

Helibracteatininecine (3) was obtained as a semi-solid, $[\alpha]_{\text{D}}^{25} + 12.1^\circ$ ($\text{EtOH}; c 0.60$). The molecular formula of this compound was deduced as $\text{C}_{18}\text{H}_{25}\text{NO}_3$ (HR-MS) and its IR spectrum was devoid of $\text{C}=\text{O}$ and $\text{C}=\text{C}$ groups, indicating it was a saturated necine. The mass spectral fragmentations of helibracteatininecine were similar to that of helibracteatinine and differed only in the relative intensity, suggested a diastereomeric relationship between them. This was borne out by the 300 MHz ^1H NMR spectrum of helibracteatininecine (in $\text{CDCl}_3 + \text{CD}_3\text{OD}$, Table 1). The diagnostic H-7 signal which resonated at δ 3.94 as a quartet, the C-9 methylene was at δ 3.79 and 3.84 as the characteristic doublet and the H-8 signal which resonated at δ 3.12 as a doublet ($J = 6.9$ Hz) were in favour of the structure 3. The assignments for the remaining protons were confirmed by

double resonance studies (Table 2). The structure 3 assigned to helibracteatininecine was established by the ^{13}C NMR spectral data. The assignments shown in Table 3 were made in comparison with ^{13}C NMR values of reference compounds helibracteatinine (4), hadienechine (5), curassanecine (6) and its diastereoisomer (7) which possess a C-1 hydroxyl group [2, 7–9]. Corroborative evidence for structure 3 was obtained from the mass spectrum. The mass spectral fragmentation process was reminiscent of a saturated pyrrolizidine alkaloid with several hydroxyl groups reported by Aasen *et al.* [6]. The stereochemistry of 3 at C-7 and C-8 was deduced from the chemical reactions of helibracteatinine (1). This on dehydration gave a product which was identical in all respects with 7-angelyl heliotridine (8) [10]. This confirmed the stereochemistry of the hydrogens at C-7 and C-8 are α in helibracteatinine and hence in 3. Establishment of the stereochemistry at C-1 was made with the help of ^{13}C NMR spectral data. The ^{13}C NMR values of 6 and 7 (Table 3) which present a structural analogy with 3 and 4 have been furnished by Gramain *et al.* [7]. The stereochemistry at C-1 is characterized by the + 5.63 and + 2.14 ppm shifts at C-2 and C-9 in the pyrrolizidine nucleus with the $\alpha\text{-CH}_2\text{OH}$ when compared with $\beta\text{-CH}_2\text{OH}$ configuration at C-1 which is due to the close proximity of the C-1/C-9 bond to C-2 and thus causing a deshielding effect. Shifts of – 4.15 and – 1.44 ppm for C-2 and C-9 in helibracteatininecine as opposed to helibracteatinine is an indication that C-1 has a $\beta\text{-CH}_2\text{OH}$ and thus establishing the structure of helibracteatininecine (3) as 1 β -hydroxymethyl-8 α -pyrrolizidine-1 α ,7 α -diol. Therefore, the structure of helibracteatinine and helibracteatinine are 1 and 2, respectively.

Table 2. NMR irradiation data of compound 3

Sl. no.	Signal irradiated	Signal affected	Signal observed
1	δ 1.63 (H-2, dist. <i>q</i>)	δ 2.55 (H-3 β , <i>dt</i>) δ 3.26 (H-3 α , <i>m</i>)	<i>d</i> simplified
2	δ 2.55 (H-3 β , <i>dt</i>)	δ 3.26 (H-3 α , <i>m</i>) δ 1.63 (H-2, dist. <i>q</i>)	simplified <i>d</i>
3	δ 2.52 (H-5 β , <i>dt</i>)	δ 3.26 (H-5 α , <i>m</i>) δ 1.84 (H-6u, <i>m</i>) δ 2.11 (H-6d, <i>m</i>)	simplified simplified <i>dd</i>
4	δ 3.26 (H-3 α & H-5 α , <i>m</i>)	δ 2.52 (H-5 β , <i>dt</i>) δ 2.55 (H-3 β , <i>dt</i>) δ 1.84 (H-6u, <i>m</i>) δ 2.11 (H-6d, <i>m</i>) δ 1.63 (H-2, dist. <i>q</i>)	simplified simplified simplified simplified <i>d</i>
5	δ 1.84 (H-6u, <i>m</i>)	δ 2.11 (H-6d, <i>m</i>) δ 3.94 (H-7, <i>q</i>) δ 3.26 (H-5 α , <i>m</i>) δ 2.52 (H-5 β , <i>dt</i>)	simplified <i>t</i> simplified <i>dd</i>
6	δ 2.11 (H-6d, <i>m</i>)	δ 1.84 (H-6u, <i>m</i>) δ 3.94 (H-7, <i>q</i>) δ 2.52 (H-5 β , <i>dt</i>) δ 3.26 (H-5 α , <i>m</i>)	simplified <i>t</i> <i>t</i> simplified
7	δ 3.94 (H-7, <i>q</i>)	δ 3.12 (H-8, <i>d</i>) δ 1.84 (H-6u, <i>m</i>) δ 2.11 (H-6d, <i>m</i>)	<i>s</i> simplified <i>dd</i>
8	δ 3.12 (H-8, <i>d</i>)	δ 3.94 (H-7, <i>q</i>)	<i>t</i>
9	δ 3.82 (near the centres of H-9u, <i>d</i> & H-9d, <i>d</i>)		

Table 3. ^{13}C NMR spectral data for compound, 3 and its related alkaloids

C	3*	4 [2]*	5 [8]	6 [7]	7 [7]
1	82.6 <i>s</i>	82.8	81.9	80.2	82.5
2	34.1 <i>t</i>	38.3	36.9	38.9	33.3
3	53.0 <i>t</i>	53.4	54.3	55.7	64.1
5	52.9 <i>t</i>	54.5	54.3	53.8	64.0
6	33.3 <i>t</i>	36.2	35.7	25.1	25.1
7	79.7 <i>d</i>	73.7	69.7	27.7	28.5
8	73.0 <i>d</i>	71.2	80.7†	70.9	70.9
9	67.2 <i>t</i>	68.6	65.2	67.8	65.6

* Run in $\text{CDCl}_3\text{--CD}_3\text{OD}$ at 75.43 MHz with TMS as internal standard. Assignments made by using proton-noise decoupled spectra and single frequency off-resonance decoupling to identify multiplets.

† High value.

Usually a plant contains the pyrrolizidine ester and its corresponding free necine. Occurrence of helibracteinine (1) and helibracteatinine (2) in *H. bracteatum* along with its diastereoisomeric free necine, helibractinecine (4) is hitherto not reported. This infers that the

plant elaborates both the ester alkaloid and free necine independently and probably free necines are not esterified to produce pyrrolizidine ester alkaloids.

EXPERIMENTAL

Heliotropium bracteatum. R.Br. (2 kg dry wt) collected during its flowering season (July/August) was processed for alkaloids as described previously [2]. Other experimental details were also presented in ref. [2].

Isolation of new alkaloids. Alkaloid fr. A (220 mg) was dissolved in a min. vol of CHCl_3 and applied to a column of neutral Al_2O_3 (50 g) set in CHCl_3 . The column was initially eluted with CHCl_3 and then with a $\text{CHCl}_3\text{--MeOH}$ gradient. Fractions (10 ml) were monitored by TLC on silica gel impregnated with 0.1 M NaOH, developed with MeOH. Frs 1–3 (CHCl_3) yielded mainly non-basic impurities. Frs 6–9 ($\text{CHCl}_3\text{--MeOH}$, 49:1) contained mainly helibracteinine (40 mg) and 12–17 ($\text{CHCl}_3\text{--MeOH}$, 49:1) helibracteatinine (60 mg). Helibracteinine and helibracteatinine were further purified by rechromatography of their combined fractions on alkalized (0.1 M NaOH) silica gel as described in ref. [2] to yield helibracteinine (18 mg) and helibracteatinine (23 mg).

Helibracteatinine was a pale yellow gum, $[\alpha]_{\text{Hg}}^{25} + 10.85^\circ$ (EtOH; c 0.64) R_f 0.54 (S_1) and 0.8 (S_2). IR $\nu_{\text{max}}^{\text{Neat}} \text{ cm}^{-1}$: 3360, 2940, 1710, 1650, 1470, 1390, 1370, 1240, 1170, 1055, 930, 860, 770. ^{13}C NMR in Tables 1 and 3. HRMS m/z (rel. int.): 255.1462 [M] $^+$ (2) (Calc. for $\text{C}_{13}\text{H}_{21}\text{O}_4\text{N}$ 255.1490), 238 (3), 237 (3.5), 224 (9), 198 (7), 181 (60), 156 (16), 155 (93), 154 (10), 124 (12), 122 (21), 100 (23), 98 (20), 83 (23), 82 (100).

Acetylation of helibracteatinine. Helibracteatinine (20 mg) and Ac_2O (0.5 ml) were mixed and kept at room temp. for 6 hr. Then H_2O (1 ml) was added and basified to pH 10.5 with NH_4OH . Acetate was extracted with CHCl_3 , washed with aq. NaHCO_3 , dried and purified by prep. TLC on alkalized (0.1 M) silica gel (S_2). A pale yellow gum (14 mg) homogeneous by TLC (R_f 0.63, S_1) was obtained and could not be induced to crystallize IR: $\nu_{\text{max}}^{\text{Neat}} \text{ cm}^{-1}$: 3330, 1740, 1710, 1230. ^1H NMR (CDCl_3). 1.9 (4H, *m*), 2.04 (7H, *br s*), 2.25 (2H, *m*), 2.5 (1H, *m*), 2.75 (1H, *m*), 3.22 (2H, *m*), 3.81 (1H, *d*, $J = 5$ Hz), 4.62 (2H, *br s*), 5.30 (1H, *q*, $J = 5$ Hz) and 6.12 (1H, *q*, $J = 7$ Hz).

Dehydration of helibracteatinine. To a soln of **1** (30 mg) in pyridine (3 ml) was added MsCl (75 μl), and the mixture was boiled under reflux for 30 min. After removing excess reagent *in vacuo*, the residue was partitioned between aq. Na_2CO_3 (*ca* 10 ml) and CHCl_3 (25 \times 4 ml). The combined CHCl_3 extracts were dried (Na_2SO_4) and evapd to yield a solid residue (12 mg). Upon purification on prep TLC on alkalized (0.1 M) silica gel with S_2 , afforded **8** (4 mg) mp 115–116°, undepressed with authentic 7-angelyl heliotridine. $[\alpha]_{\text{D}}^{25} + 10.9^\circ$ (c 0.2; EtOH); IR $\nu_{\text{max}}^{\text{KBr}} \text{ cm}^{-1}$ 3380 (OH), 1700 (ester).

Helibracteatin (**2**) was a brown gum, $[\alpha]_{\text{Hg}}^{25} + 3.64^\circ$ (EtOH; c 0.33) R_f 0.43 (S_1) and 0.52 (S_2); IR: $\nu_{\text{max}}^{\text{Neat}} \text{ cm}^{-1}$: 3380, 2950, 1710, 1650, 1470, 1390, 1360, 1240, 1165, 1055, 860, 770. ^1H and ^{13}C NMR spectra in Tables 1 and 3. HRMS m/z (rel. int.) 255.1467 [M] $^+$ (0.5), 238 (6.2), 237 (1), 156 (43.4), 155 (46.5), 138 (16.3), 122 (2.3), 111 (99.7), 99 (31), 98 (100), 82 (35).

Hydrolysis of ester alkaloids. The ester alkaloids (40 mg) dissolved in 1 ml of EtOH was refluxed with 2 ml of 15% NaOH on a steam bath for 1 hr. The reaction

mixt was cooled and extracted exhaustively with CHCl_3 . The CHCl_3 extract dried and evapd to afford free necine (15 mg).

Both helibracteatinine (**1**) and helibracteatin (**2**) on hydrolysis gave identical necine, helibracteatinine (**3**), gum, $[\alpha]_{\text{Hg}}^{25} + 12.1^\circ$ (EtOH; c 0.6). IR: $\nu_{\text{max}}^{\text{Neat}} \text{ cm}^{-1}$ 3350, 2930, 2860, 1560, 1420, 1200, 1100, 1060 and 840. ^1H and ^{13}C NMR in Tables 1 and 3. HRMS m/z (rel. int.): 173.1058 [M] $^+$ (19.5) (Calc. for $\text{C}_8\text{H}_{15}\text{O}_3\text{N}$ 173.1052), 156 (4.5), 155 (14), 142 (2.7), 129 (12), 99 (84.9), 98 (100), 82 (83.5).

Acknowledgements—The authors are grateful to Dr P. S. Subramanian for valuable suggestions and supervision. We also thank the CSIR, New Delhi, for the award of a Senior Research Fellowship (to SS).

REFERENCES

1. Ravi, S., Lakshmanan, A. J. and Herz, W. (1990) *Phytochemistry* **29**, 361.
2. Lakshmanan, A. J. and Shanmugasundaram, S. (1994) *Phytochemistry* **36**, 245.
3. Lakshmanan, A. J. and Shanmugasundaram, S. (1995) *Phytochemistry* (in press).
4. Lakshmanan, A. J. (1981) Ph.D. Thesis. University of Madras.
5. Mohanraj, S., Kulanthaivel, P., Subramanian, P. S. and Herz, W. (1981) *Phytochemistry* **20**, 1991.
6. Aasen, A. J., Culvenor, C. C. J. and Smith, L. W. (1969) *J. Org. Chem.* **34**, 4137.
7. Gramain, J.-C., Remuson, R., Vallee Goyel, D., Guilhem, J. and Lavaud, C. (1991) *J. Nat. Prod.* **54**, 1062.
8. Were, O., Benn, M. and Munavu, R. M. (1991) *J. Nat. Prod.* **54**, 491.
9. Mohanraj, S. and Herz, W. (1982) *J. Nat. Prod.* **45**, 328.
10. Warren, F. L. (1966) *Fortsch. Chem. Org. Naturst.* **24**, 329.