

LIGNAN GLYCOSIDES FROM INNER BARK OF *BETULA PENDULA*

ELITA ŠMITE,* HEFENG PAN and LENNART N. LUNDGREN†

Department of Chemistry, Swedish University of Agricultural Sciences, P.O. Box 7015, S-750 07, Uppsala, Sweden; *Latvia State Institute of Forestry Science, Riga Street 111, Salaspils, LV-2169, Latvia

(Received 11 November 1994)

Key Word Index—*Betula pendula*; Betulaceae; inner bark; lignan; monoaryl glycoside.

Abstract—Four lignan glycosides [lyoniside, nudiposide, (—)-isolariciresinol 3 α -O- β -D-xylopyranoside and (2R,3R)-2,3-dihydro-3-hydroxymethyl-7-methoxy-2-(3'-methoxy-4'- α -L-rhamnopyranosyloxyphenyl)-5-benzofuranpropanol] were isolated from the inner bark of *Betula pendula*, in addition to (+)-catechin, (+)-catechin 7-O- β -D-xylopyranoside, salidroside, tachioside and isotachioside.

INTRODUCTION

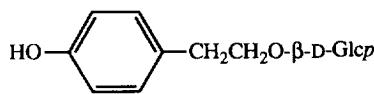
In a previous paper [1], we reported on structural studies of a series of arylbutanoid and diarylheptanoid glycosides from the inner bark of *Betula pendula*. The present communication describes the isolation and identification of other phenolic constituents from the same material.

RESULTS AND DISCUSSION

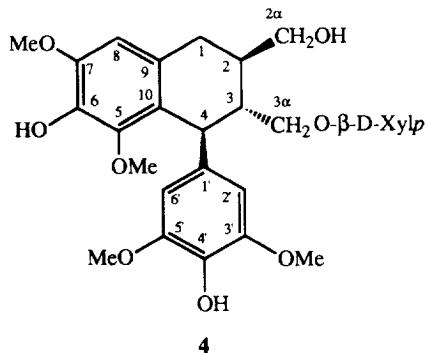
From the aqueous ethanol extract of the inner bark, 1–7, (+)-catechin and (+)-catechin 7-O- β -D-xylopyranoside were isolated. (+)-Catechin and (+)-catechin 7-O- β -D-xylopyranoside were identified by direct comparison ($[\alpha]_D$, TLC, ^1H NMR) with authentic samples [2]; 3 (salidroside) was identified by comparison ($[\alpha]_D$, and ^1H NMR) with literature data [3, 4].

Compounds 1 and 2, which were isolated as a mixture in a ratio of 5:3, were identified as tachioside (4-hydroxy-3-methoxyphenyl β -D-glucopyranoside) and isotachioside (4-hydroxy-2-methoxyphenyl β -D-glucopyranoside), respectively; enzymatic hydrolysis of the mixture afforded glucose and an aglycone characterized by ^1H NMR and mass spectrometry as methoxyhydroquinone. The ^1H NMR spectrum of the 1/2 mixture was in accordance with published spectra [5] of tachioside and isotachioside.

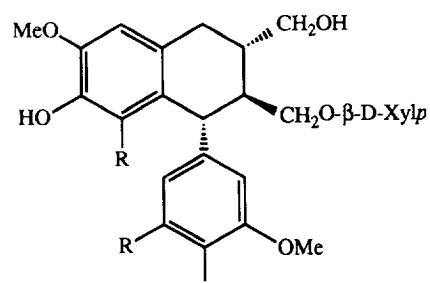
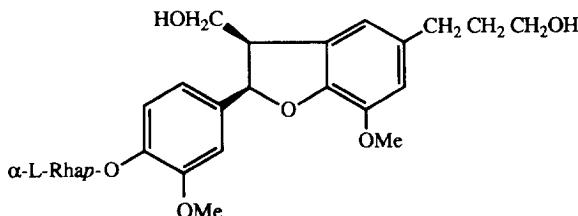
Compounds 4 ($[\alpha]_D + 25.4^\circ$) and 5 ($[\alpha]_D - 60.0^\circ$) were isolated in low amounts (8 and 6 mg, respectively) by reverse-phase HPLC and identified as lyoniside [(+)-lyoniresinol 3 α -O- β -D-xylopyranoside] and nudiposide [(—)-lyoniresinol 3 α -O- β -D-xylopyranoside], respectively. Their ^{13}C NMR spectra and optical rotations were in



excellent accordance with literature data [5]. Acetylation (Ac_2O -pyridine) yielded the hexaacetates and enzymatic hydrolysis of 4 and 5 afforded xylose and the aglycones. The latter were not separated by TLC or HPLC, and showed specific rotations ($+20^\circ$ and -44°) of opposite signs. The deviation from known [5, 6] optical rotation values of (+)- and (—)-lyoniresinol ($+53^\circ$ and -53°) is accounted for by the small amounts of the aglycones available. The ^1H NMR spectra of 4 and 5 differed only with respect to the signal from the anomeric proton and for some alicyclic protons (Table 1). Complete assignments of the spectra were made with ^1H - ^1H COSY techniques, apparently for the first time. Compounds 4 and 5 have been found in several species [5, 7–9] previously, but just once [10] in the same species. The corresponding 3 α -glucosides were recently reported [11].

Compound 6 was identified as (—)-isolariciresinol 3 α -O- β -D-xylopyranoside and 7 as (2R,3R)-2,3-dihydro-3-hydroxymethyl-7-methoxy-2-(3'-methoxy-4'- α -L-rhamnopyranosyloxyphenyl)-5-benzofuranpropanol by comparison ($[\alpha]_D$, TLC, ^1H NMR) with authentic samples. These compounds have been isolated previously from needles of *Picea abies* and *Pinus massoniana* [12, 13]. To the best of our knowledge, 1, 2 and 4–7 have not been reported from *Betula* species previously.


EXPERIMENTAL

Extraction of plant material, fractionation of extractives on Sephadex LH-20, general procedures and the instruments used were as described in a previous paper [1]. Silica gel CC of LH-20 frs C-H [1] with $\text{EtOAc}-\text{MeOH}-\text{H}_2\text{O}$ (50:6:5) and $\text{CHCl}_3-\text{MeOH}-\text{H}_2\text{O}$ in different proportions yielded 1 and 2 (5:3 mixt. 2 mg), and 3 (3 mg) from fr. C, 7 (20 mg) and a mixt. of 4 and 5 from fr. D, 6 (7 mg) from fr. F, (+)-catechin



*Author to whom correspondence should be addressed.

1 $R_1 = H; R_2 = \beta\text{-D-Glcp}$ 2 $R_1 = \beta\text{-D-Glcp}; R_2 = H$

3

4

5 $R = OMe$ 6 $R = H$

7

Table 1. ^1H NMR spectral data of 4 and 5 (in CD_3OD)

H	4	5	H	4	5
1a	2.71	2.68	5-OMe	3.32	3.30
1b	2.63	2.68	7-OMe	3.85	3.85
2	1.70	1.71	3',5'-OMe	3.74	3.75
2 α a	3.65	3.62	d-xylose moiety		
2 α b	3.55	3.62	1"	4.21	4.10
3	2.04	2.03	2"	3.21	3.19
3 α a	3.84	3.81	3"	3.30	3.27
3 α b	3.41	3.58	4"	3.47	3.49
4	4.38	4.23	5'a	3.82	3.86
8	6.56	6.57	5'b	3.16	3.13
2',6'	6.42	6.41			

J [Hz]: 4: 1a,1b = 15.1; 1a,2 = 4.9; 1b,2 = 11.2; 2,2 α a = 4.2; 2,2 α b = 6.5; 2 α a, 2 α b = 10.8; 3,4 = 6.6; 3,3 α a = 5.3; 3,3 α b = 4.0; 3 α a, 3 α b = 9.8; 1",2" = 7.5; 2",3" = 9.1; 3",4" = 8.7; 4",5'a = 5.5; 4",5'b = 10.4; 5'a,5'b = 11.4; 5: 3,4 = 7.0; 3,3 α a = 4.6; 3,3 α b = 4.9; 3 α a,3 α b = 10.1; 1",2" = 7.3; 2",3" = 9.1; 3",4" = 8.9; 4",5'a = 5.5; 4",5'b = 10.4; 5'a,5'b = 11.6.

7- O - β -D-xylopyranoside (80 mg) from fr. G and (+)-catechin (2.8 g) from fr. H. Refractionation by reverse-phase HPLC of the 4/5 pair using aq. MeOH as mobile phase yielded 4 (8 mg) and 5 (6 mg).

Hexaacetate of 4. ^1H NMR (CD_3OD): δ 1.60–5.19 (m, 15H), 2.02, 2.04, 2 \times 2.05, 2.28, 2.31 (6s, 6OAc), 3.17 (s, 5-OMe), 2 \times 3.74 (2s, 3'-OMe and 5'-OMe), 3.82 (s, 7-OMe), 6.32 (2H, s, H-2' and H-6'), 6.52 (1H, s, H-8).

Hexaacetate of 5. ^1H NMR (CD_3OD): δ 1.60–5.21 (m, 15H), 2.00, 2.02, 2.03, 2.05, 2.29, 2.31 (6s, 6OAc), 3.23 (s, 5-OMe), 2 \times 3.72 (2s, 3'-OMe and 5'-OMe), 3.82 (s, 7-OMe), 6.33 (2H, s, H-2' and H-6'), 6.52 (1H, s, H-8).

Acid hydrolysis of 7 gave rhamnose and (2R,3R)-2,3-dihydro-7-hydroxy-2-(4'-hydroxy-3'-methoxyphenyl)-3-(hydroxymethyl)-5-benzofuranpropanol, identical ($[\alpha]_D$ and ^1H NMR) with an authentic sample [12].

Acknowledgements—This work was supported financially by the Royal Swedish Academy of Agriculture and Forestry.

REFERENCES

1. Šmite, E., Lundgren, L. N. and Andersson, R. (1993) *Phytochemistry* **27**, 365.
2. Pan, H. and Lundgren, L. N. (1994) *Phytochemistry* **36**, 79.
3. Thieme, H. (1964) *Naturwissenschaften* **51**, 360.
4. LaLonde, R. T., Wong, C. and Tsai, A. I. M. (1976) *J. Am. Chem. Soc.* **98**, 3007.
5. Inoshiri, S., Sasaki, M., Kohda, H., Otsuka, H. and Yamasaki, K. (1987) *Phytochemistry* **26**, 2811.
6. Freudenberg, K. and Weinges, K. (1959) *Tetrahedron Letters* 19.
7. Ogawa, M. and Ogihara, Y. (1976) *Chem. Pharm. Bull.* **24**, 2102.
8. Dada, G., Corbani, A., Manitto, P., Speranza, G. and Lunazzi, L. (1989) *J. Nat. Prod.* **52**, 1327.
9. Yoshinari, K., Sashida, Y. and Shimomura, H. (1989) *Chem. Pharm. Bull.* **37**, 3301.
10. Miyase, T., Ueno, A., Takizawa, N., Kobayashi, H. and Oguchi, H. (1989) *Phytochemistry* **28**, 3483.
11. Achenbach, H., Löwel, M., Waibel, R., Gupta, M. and Solis, P. (1992) *Planta Med.* **58**, 270.
12. Lundgren, L. N., Popoff, T. and Theander, O. (1981) *Phytochemistry* **20**, 1967.
13. Lundgren, L. N., Shen, Z. and Theander, O. (1985) *Acta Chem. Scand. B* **39**, 241.