

TAXIFOLIN 3-ARABINOSIDE FROM *FRAGARIA X ANANASSA*

KANJI ISHIMARU,* TOSHIO OMOTO,† IWAO ASAI,‡ KATSUSHI EZAKI,§ and KOICHIRO SHIMOMURA,§

Department of Applied Biological Sciences, Faculty of Agriculture, Saga University, 1 Honjo, Saga 840, Japan; †San-Ei Gen F·F·I. Inc., 1-1-11 Sanwa, Toyonaka, Osaka 561, Japan; ‡Division of Applied Sciences, Graduate School of Integrated Science and Art, University of East Asia, 2-1 Ichinomiya-Gakuen, Shimonoseki 751, Japan; §Tsukuba Medicinal Plant Research Station, National Institute of Health Sciences, 1 Hachimandai, Tsukuba, Ibaraki 305, Japan

(Received 14 November 1994)

Key Word Index—*Fragaria x ananassa*; Rosaceae; flavonoid; tannin; taxifolin; arabinoside; catechin; procyanidin; pedunculagin.

Abstract—From the roots of *Fragaria x ananassa*, a new flavonoid, (+)-taxifolin 3-*O*- α -L-arabinofuranoside was isolated and its structure was established on the basis of chemical and spectroscopic evidence. A hydrolysable tannin, pedunculagin, and condensed tannins, (+)-catechin, (+)-afzelechin-(4 α -8)-(+)-catechin, procyanidin B-3 and procyanidin B-6 were also isolated.

INTRODUCTION

Fragaria plants (strawberry; Rosaceae) have been examined mainly for the anthocyanins in the fruits [1]; some proanthocyanidins in the roots of *F. vesca* L. were analysed by HPLC [2]. *Fragaria x ananassa* Duch. cv. Reikov (hybrid between *F. x ananassa* Duch. cv. Harunoka and *F. x ananassa* Duch. cv. Hukuba), established in 1975 in Japan, is one of the most important varieties in this country. In the present chemical studies, we isolated a new flavonoid, (+)-taxifolin 3-*O*- α -L-arabinofuranoside, from the roots together with some hydrolysable and condensed tannins.

RESULTS AND DISCUSSION

The aqueous acetone extract of the roots of *F. x ananassa* Duch. cv. Reikov was separated on Sephadex LH-20, MCI-gel CHP 20P and Bondapak C18 Porasil B column chromatography to give six phenolics, 1, (+)-catechin (2), (+)-afzelechin-(4 α -8)-(+)-catechin (3) [3], procyanidin B-3 (4) [4], procyanidin B-6 (5) [5] and pedunculagin (6) [6].

Compound 1 was obtained as an off-white, amorphous powder exhibiting $[M - H]^-$ peak at m/z 435.0925 ($C_{20}H_{19}O_{11}$) in the high-resolution negative, secondary ion mass spectrum (SIMS). The 1H NMR spectrum (Table 1) of 1 showed two coupled ($J = 11.3$ Hz) methine (δ 4.91 and 5.09), *meta*-coupled aromatic (δ 5.91 and 5.95) and ABX-type aromatic (δ 6.86, 6.92 and 7.08) proton

signals. These signals, in addition to the 15 carbon signals in the ^{13}C NMR spectrum (Table 2) of 1, suggested the presence of the 5,7,3',4'-tetrahydroxyflavanonol structure. The ^{13}C NMR spectrum of 1 also exhibited signals of a pentose moiety at δ 63.2, 79.4, 80.8, 90.1 and 108.0.

Both enzymatic (with hesperidinase) and acid (with 1N HCl) hydrolysis of 1 gave L-arabinose ($[\alpha]_D + 72.0$) as the sugar, together with an aglycone, 1a, which was identified as (+)-taxifolin by its spectroscopic (1H NMR, see Table 1) and physical ($[\alpha]_D + 17.0$) data [7]. Therefore, based on the chemical shifts of the carbon signals of the arabinose moiety (^{13}C NMR, see Table 2), Compound 1 was presumed to be the arabinofuranoside of 1a. Acetylation of 1 gave a heptaacetate, 1b, FAB-mass spectrum m/z : 731 [$M + H$] $^+$, $C_{34}H_{34}O_{18}$. In the 1H NMR spectrum (Table 1) of 1b, the signal assignable to H-3 (δ 4.48) was not shifted downfield compared with that of 1a (δ 4.55), which clearly indicated the location of the arabinofuranose unit in 1 to be at this position (C-3). The configuration of the anomeric carbon of 1 was determined to be α on the basis of the small J value (s) of the anomeric proton signal (δ 4.12) in the 1H NMR spectrum of 1 [8]. Thus 1 is (+)-taxifolin 3-*O*- α -L-arabinofuranoside. This is its first report in nature.

EXPERIMENTAL

1H and ^{13}C NMR: 270 and 67.5 MHz, respectively, locked to the major deuterium resonance of the solvents (acetone- d_6 and $CDCl_3$). TLC: precoated Kieselgel 60 F254 plates, spots detected by UV illumination and visualized by spraying with 10% H_2SO_4 , 2% $FeCl_3$ and/or anisaldehyde- H_2SO_4 reagents.

*Author to whom correspondence should be addressed.

Table 1. ^1H NMR spectral data for **1**, **1a** and **1b** (270 MHz, δ values)

H	1*	1a*	1b†
Flavononol			
2	5.09 1H, <i>d</i> (11.3)	4.98 1H, <i>d</i> (11.3)	5.35 1H, <i>d</i> (10.1)
3	4.91 1H, <i>d</i> (11.3)	4.55 1H, <i>d</i> (11.3)	4.38 1H, <i>d</i> (10.1)
6	5.95 1H, <i>d</i> (1.4)	5.96 1H, <i>d</i> (1.4)	6.79 1H, <i>d</i> (1.5)
8	5.91 1H, <i>d</i> (1.4)	5.92 1H, <i>d</i> (1.4)	6.60 1H, <i>d</i> (1.5)
2'	7.08 1H, <i>d</i> (1.6)	7.05 1H, <i>d</i> (1.6)	7.38 1H, <i>d</i> (1.6)
5'	6.86 1H, <i>d</i> (5.1)	6.83 1H, <i>d</i> (5.1)	7.25 1H, <i>d</i> (7.6)
6'	6.92 1H, <i>dd</i> (5.1, 1.6)	6.87 1H, <i>dd</i> (5.1, 1.6)	7.42 1H, <i>dd</i> (1.6, 7.6)
Arabinofuranose			
1	4.12 1H, <i>s</i>		4.29 1H, <i>s</i>
2	3.78 1H, <i>br s</i>		5.09 1H, <i>d</i> (0.7)
3	3.78 1H, <i>br s</i>		4.88 1H, <i>dd</i> (0.7, 6.8)
4	4.20 1H, <i>m</i>		4.69 1H, <i>m</i>
5	3.62 2H, <i>br d</i> (2.6)		4.17 1H, <i>dd</i> (3.2, 12.6)
			4.43 1H, <i>dd</i> (1.6, 12.6)
Ac			
			2.02, 2.08, 2.15, 2.30,
			2.31, 2.32, 2.39
			each 3H, <i>s</i>

*In acetone- d_6 + D₂O.†In CDCl₃.Coupling constants (*J* in Hz) in parentheses.Table 2. ^{13}C NMR spectral data for **1**, **1a** and **1b** (67.5 MHz, δ values)

C	1*	1a*	1b†
Flavanonol			
2	83.9 (83.3)	84.4	81.2
3	74.2 (73.6)	73.1	77.1
4	198.2 (196.7)	198.1	187.3
4a	102.6 (101.9)	101.4	111.0
5	165.5 (165.0)	164.9	156.2
6	97.7 (97.5)	97.0	109.0
7	168.8 (169.3)	167.7	162.3
8	96.8 (96.4)	96.6	111.3
8a	164.8 (163.8)	164.0	151.4
1'	129.6 (128.3)	129.6	134.5
2'	116.2 (116.2)	115.6	122.2
3'	146.5 (147.5)	145.6	142.3
4'	147.5 (148.4)	146.4	142.8
5'	116.6 (116.5)	115.7	123.9
6'	121.3 (120.2)	120.7	125.5
Arabinofuranose			
1	108.0 (107.9)	105.9	
2	80.8 (81.2)	80.5	
3	79.4 (79.3)	77.2	
4	90.1 (89.5)	80.9	
5	63.2 (63.0)	63.0	
Ac-Me		20.5, 20.6, 20.7 ($\times 2$), 20.8, 21.0, 21.2	
Ac-CO		167.8, 167.9, 168.0, 169.0, 169.4, 170.5, 170.7	

*In acetone- d_6 + D₂O. Values in parentheses for **1** are in pyridine- d_5 .†In CDCl₃.

Plant material. Plants of *Fragaria x ananassa* Duch. cv. Reikov were propagated and cultivated in Tsukuba, Japan. Voucher specimens are deposited at Faculty of Agriculture, Saga University.

Extraction and isolation. Lyophilized roots (200 g) of *F. x ananassa* Duch. cv. Reikov were mashed and extracted at room temp. with 80% aq. Me₂CO (1.5 l and 11 \times 2). The extract, after concn. under red. pres., was subjected to Sephadex LH-20 (3.1 cm \times 36 cm) CC and eluted by 60% MeOH to afford three frs (Frs 1–3). Fr. 2 was sepd by MCI-gel CHP 20P (3.2 cm \times 23 cm, H₂O–MeOH) to give frs 21, 22 and 23. These three frs were purified by Bondapak C18 Porasil B (H₂O–MeOH) and Sephadex LH-20 (EtOH) CC to give **2** (3.6 g), **3** (330 mg), **4** (2.3 g), **6** (73 mg) (from fr. 21), **5** (86 mg) (from fr. 22) and **1** (661 mg) (from fr. 23). Compounds **2–6** were identified by the comparison of ^1H NMR spectral data with literature values.

(+)-taxifolin 3-*O*- α -L-arabinofuranoside (**1**). Amorphous powder, $[\alpha]_D^{25} - 32.0^\circ$ (MeOH; *c* 0.4); ^1H NMR; see Table 1; ^{13}C NMR; see Table 2; high-resolution negative SI-MS *m/z* (rel. int.): 435.0925 [M – H][–] (97).

*Partial hydrolysis of **1** with hesperidinase.* A soln of **1** (113 mg) in H₂O (2 ml) was incubated with hesperidinase (90 mg) (Sigma H-8137) for 19 days at 37°. Compound **1a**, crystallized in the reaction mixt. was sepd by filtration. Compound **1a** (48 mg), needles, was identified as (+)-taxifolin; $[\alpha]_D^{25} + 17.0^\circ$ (Me₂CO; *c* 0.3); ^1H NMR; see Table 1. The filtrate, treated with MeOH, was sepd by Sephadex LH-20 (2.3 cm \times 23 cm, MeOH) and Bondapak C18 Porasil (2.6 cm \times 18 cm, H₂O–MeOH) CC to afford **1** (20 mg, recovered) and L-(+)-arabinose (23 mg); $[\alpha]_D^{25} + 72.0^\circ$ (H₂O; *c* 0.5); TLC in CHCl₃–MeOH–H₂O (13:10:2), *R_f* 0.56, in C₆H₆–EtCO₂H–HCO₂H (1:7:1), *R_f* 0.14. The L-(+)-

arabinose was also identified by direct comparison of its ^1H and ^{13}C NMR (in pyridine- d_5) spectral data with those of an authentic sample.

Partial hydrolysis of 1 with 1N HCl. A soln of **1** (61 mg) in 1N HCl (1 ml) was incubated for 16 hr at 50°. The reaction mixt. after neutralization with Ba(OH)₂, was subjected to Sephadex LH-20 (2.3 cm \times 23 cm) and eluted with H₂O to afford **1a** (32 mg) and L-(+)-arabinose (15 mg).

Heptaacetate (1b). Amorphous powder, $[\alpha]_D^{25} + 6.1^\circ$ (CHCl₃; *c* 0.5); ^1H NMR: see Table 1; ^{13}C NMR: see Table 2; FAB-MS *m/z* (rel. int): 731 [M + H]⁺ (0.76), 753 [M + Na]⁺ (2.49), 769 [M + K]⁺ (0.23).

Acknowledgements—The authors are grateful to Dr T. Tanaka (Faculty of Pharmaceutical Sciences, Nagasaki University) for measurements of optical rotation and MS. This work was supported in part by Grants-in-Aid for Science Research (06760036) from the Ministry of Education, Science and Culture of Japan to K. Ishimaru and by a Ministry of Health and Welfare, Science

Research Fund Subsidy granted to the Japan Health Science Foundation.

REFERENCES

1. Sondheimer, E. and Kertesz, Z. I. (1948) *J. Am. Chem. Soc.* **70**, 3476.
2. Vennat, B., Pourrat, A., Texier, O., Pourrat H. and Gaillard, J. (1987) *Phytochemistry* **26**, 261.
3. Hsu, F.-L., Nonaka, G. and Nishioka, I. (1985) *Chem. Pharm. Bull.* **33**, 3142.
4. Thompson, R. S., Jacques, D., Haslam, E. and Tanner, R. J. N. (1972) *J. Chem. Soc. Perkin Trans. I* 1387.
5. Fletcher A. C., Porter, L. J., Haslam, E. and Gupta, R. K. (1977) *J. Chem. Soc. Perkin Trans. I* 1628.
6. Tanaka, T., Nonaka, G. and Nishioka, I. (1985) *J. Chem. Res. (M)* 2001.
7. Nonaka, G., Goto Y., Kinjo, J., Nohara, T. and Nishioka, I. (1987) *Chem. Pharm. Bull.* **35**, 1105.
8. Higuchi, R. and Komori, T. (1987) *Phytochemistry* **26**, 2357.