

A FURTHER TULIPOSIDE FROM *ALSTROEMERIA REVOLUTA*

LARS P. CHRISTENSEN

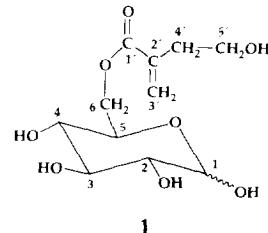
Research Group for Plant Breeding and Propagation, Department of Ornamentals, Research Centre Årslev,
Danish Institute of Plant and Soil Science, Kirstinebjergvej 10, DK-5792 Årslev, Denmark

(Received 25 January 1995)

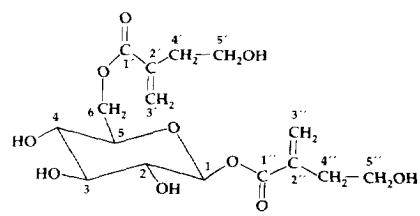
Key Word Index—*Alstroemeria* species; Alstroemeriaceae; 6-tuliposide A; tuliposide D; tuliposide E;
¹H NMR; ¹³C NMR.

Abstract—A reinvestigation of *Alstroemeria revoluta* afforded, in addition to tuliposides A and D, a new tuliposide. The structure of the new tuliposide was determined by spectral methods to be 1-[4-(4-hydroxy-2-methylenebutanoate)-2-methylenebutanoate]-6-(4-hydroxy-2-methylenebutanoate)- β -D-glucopyranose. The investigation of four other *Alstroemeria* species revealed only the presence of tuliposides A and D.

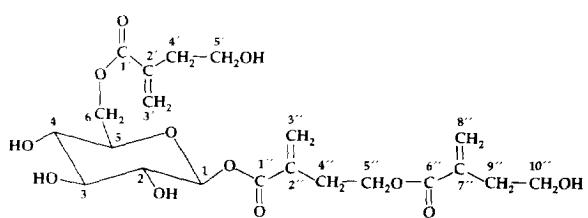
INTRODUCTION


Tuliposide A and its β -hydroxy derivative tuliposide B are widely distributed in the Alstroemeriaceae (tuliposide A) [1-6] and the Liliaceae (tuliposides A and B) [5-7]. However, Kristiansen and Christensen have recently isolated a further tuliposide (tuliposide D) from *Alstroemeria*, which also seems to be widespread in this genus [2, 3]. I have now reinvestigated *A. revoluta* Ruiz et Pavon and four other *Alstroemeria* species. The investigation of *A. revoluta* gave, in addition to tuliposides previously isolated from this plant [1-3], a new tuliposide, named tuliposide E. This paper describes the isolation and structure elucidation of tuliposide E.

RESULTS AND DISCUSSION


Frozen leaves plus stems and flowers of *A. revoluta* were extracted with water and the combined water extracts subjected to column chromatography to afford 6-tuliposide A (1), tuliposide D (2) and tuliposide E (3).

Alstroemeria angustifolia ssp. *angustifolia*, *Alstroemeria aurea* and *Alstroemeria ligu* ssp. *ligu* afforded 1 and 2, whereas *A. ligu* ssp. *simsii* gave only 1 (see Experimental and [1, 2]).


Compound 3 was obtained as a syrup. Its FAB-mass spectrum exhibited a $[M + H]^+$ at *m/z* 475 ($C_{21}H_{31}O_{12}$). The IR spectrum showed the presence of conjugated esters (1708 cm^{-1}) and double bonds (1632 cm^{-1}). The ¹³C NMR spectrum of 3 showed 21 signals, of which six could be assigned to a β -D-glucopyranose unit by comparison with the ¹³C NMR spectrum of 1 (see Experimental) and 2 (see Table 1). The remaining 15 signals were assigned to a 4-hydroxy-2-methylenebutanoate moiety and a 4-(4-hydroxy-2-methylenebutanoate)-2-methylenebutanoate moiety (Table 1). The presence of

1

2

3

a 4-(4-hydroxy-2-methylenebutanoate)-2-methylenebutanoate moiety in 3 was further supported by the ¹H NMR signals at δ 2.60 (2H, *t*, *J* = 6.5 Hz), 2.82 (2H, *t*, *J* = 6.5 Hz), 3.73 (2H, *t*, *J* = 6.5 Hz), 4.40 (2H, *t*, *J* = 6.5 Hz), 5.75 (1H, *d*, *J* = 1.3 Hz), 5.92 (1H, *d*, *J* = 1.1 Hz), 6.28

(1H, *d*, *J* = 1.3 Hz) and 6.47 (1H, *d*, *J* = 1.1 Hz). The remaining signals in the ¹H NMR spectrum of **3** were assigned to a 4-hydroxy-2-methylenebutanoate moiety by comparison with the ¹H NMR spectrum of **1** and **2** (Table 2). The β -nature of **3** was confirmed by the ¹H NMR signal at δ 5.63 (1H, *d*, *J* = 7.9 Hz). The chem-

Table 1. ¹³C NMR spectral data (62.5 MHz, CD₃OD, δ -values) for compounds **2** and **3**

C	2 *	3
1	96.0 <i>d</i>	96.1 <i>d</i>
2	76.1 <i>d</i> ^a	76.2 <i>d</i> ^a
3	77.8 <i>d</i>	77.9 <i>d</i>
4	71.3 <i>d</i>	71.3 <i>d</i>
5	73.8 <i>d</i> ^a	73.9 <i>d</i> ^a
6	64.7 <i>t</i>	64.7 <i>t</i>
1'	168.2 <i>s</i>	168.3 <i>s</i>
2'	138.5 <i>s</i>	138.6 <i>s</i> ^b
3'	128.0 <i>t</i>	128.0 <i>t</i>
4'	36.3 <i>t</i>	36.3 <i>t</i>
5'	61.6 <i>t</i>	61.6 <i>t</i>
1''	166.9 <i>s</i>	166.6 <i>s</i>
2''	138.1 <i>s</i>	137.6 <i>s</i>
3''	129.2 <i>t</i>	129.6 <i>t</i>
4''	36.1 <i>t</i>	32.3 <i>t</i>
5''	61.4 <i>t</i>	64.2 <i>t</i>
6''	—	168.3 <i>s</i>
7''	—	138.7 <i>s</i> ^b
8''	—	127.8 <i>t</i>
9''	—	36.2 <i>t</i>
10''	—	61.6 <i>t</i>

*¹³C NMR (D₂O) is given in [3].

^{a,b}Assignments in the same column are interchangeable.

ical shift of this anomeric proton, compared with the chemical shift (δ 4.59) observed for the β -anomeric H-1 in **1**, clearly indicates the presence of an ester linkage at C-1. The downfield resonance of the C-6 protons in **3** (δ 4.36 and 4.57), compared with the values (δ 3.60 and 3.75) observed for H-6 of β -D-glucose [8], is due to an ester linkage at C-6. By comparing the NMR spectral data (Tables 1 and 2) of **3** with those of **2** significant differences in the chemical shifts of only H-3'', H-4'' and H-5'' and C-1'', C-2'', C-3'', C-4'' and C-5'' could be observed. This clearly indicates that the 4-hydroxy-2-methylenebutanoate moiety is linked at C-6 and that the 4-(4-hydroxy-2-methylenebutanoate)-2-methylenebutanoate moiety is linked at C-1. From the above results the structure of **3** was determined to be 1-[4-(4-hydroxy-2-methylenebutanoate)-2-methylenebutanoate]-6-(4-hydroxy-2-methylenebutanoate)- β -D-glucopyranose.

The incidence of contact dermatitis from *Alstroemeria* has increased in recent years, probably because of extended production of *Alstroemeria* as cut flowers [9–11]. One of the causative agents has been identified as 6-tuliposide A (**1**) [4]. Although the allergenic properties of tuliposide D (**2**) and tuliposide E (**3**) have not been investigated, their structural relationship to the allergenic 6-tuliposide A clearly indicates that they are possible allergens. If so, tuliposide D and E most probably cross-react with 6-tuliposide A. The amounts of tuliposide E in *A. revoluta* are, however, too small to contribute significantly to the allergenic properties of this species. However, tuliposide D occurs regularly in the genus *Alstroemeria* and, in some cases, in relatively large amounts (see Experimental and refs [2, 3]), which seems to indicate that tuliposide D could be a further causative agent of allergic contact dermatitis in *Alstroemeria*. Tuliposides

Table 2. ¹H NMR spectral data (250 MHz, CD₃OD, δ -values) for compounds **1–3**

H	1 *	2 †	3
1	4.59 <i>d</i> (β); 5.19 <i>d</i> (α) (7.7) [‡] ; (3.7)	5.63 <i>d</i> (β) (7.9)	5.63 <i>d</i> (β) (7.9)
2–5	3.20–4.10 <i>m</i>	3.40–3.90 <i>m</i>	3.40–3.90 <i>m</i>
6	4.30–4.65 <i>m</i>	4.36 <i>dd</i> ; 4.57 <i>dd</i> (5.6, 12.0); (2.2, 12.0)	4.36 <i>dd</i> ; 4.57 <i>dd</i> (5.6, 12.0); (2.2, 12.0)
3'	5.79 <i>br s</i> ; 6.34 <i>d</i> (1.3)	5.78 <i>d</i> ; 6.33 <i>d</i> (1.3); (1.3)	5.78 <i>d</i> ; 6.33 <i>d</i> (1.3); (1.3)
4'	2.63 <i>t</i> (6.5)	2.62 <i>t</i> (6.5)	2.62 <i>t</i> (6.5)
5'	3.76 <i>t</i> (6.5)	3.76 <i>t</i> (6.5)	3.76 <i>t</i> (6.5)
3''	—	5.89 <i>d</i> ; 6.44 <i>d</i> (1.1); (1.1)	5.92 <i>d</i> ; 6.47 <i>d</i> (1.1); (1.1)
4''	—	2.65 <i>t</i> (6.5)	2.82 <i>t</i> (6.5)
5''	—	3.77 <i>t</i> (6.5)	4.40 <i>t</i> (6.5)
8''	—	—	5.75 <i>d</i> ; 6.28 <i>d</i> (1.3); (1.3)
9''	—	—	2.60 <i>t</i> (6.5)
10''	—	—	3.73 <i>t</i> (6.5)

*¹H NMR (D₂O) is given in [1, 3, 4].

†¹H NMR (D₂O) is given in [3].

‡ *J* in Hz in parentheses.

are probably storage products for D-glucose and a defence against fungal attack, as they may undergo enzymic hydrolysis to yield D-glucose and the highly antibiotic and allergenic α -methylene- γ -butyrolactone (tulipalin A) [4, 5, 7, 11–13].

EXPERIMENTAL

General. FAB-MS: in glycerol; CC: silica gel 60 (Merck, 70–230 mesh); TLC: silica gel 60 plates (Merck, ART. 5721). Spots on TLC were visualized with a solution of aniline and diphenylamine in acidified Me_2CO followed by heating [1–3].

Plant material. *Alstroemeria* species were produced from seeds in a greenhouse and identified according to Bayer [14]. Voucher specimens are retained at the Department of Ornamentals, Research Centre Årslev, Danish Institute of Plant and Soil Science. Flowers and leaves/stems were harvested in August and frozen (-20°) until use.

Extraction and isolation. Frozen leaves/stems and flowers of *A. revoluta* were ground and extracted with distilled H_2O for 24 hr at 4°. The extraction was repeated and the combined extracts filtered and evapd, under red. press., to give a brownish syrup [3]. CC of the crude extracts on silica gel, using a CHCl_3 –MeOH gradient (8:2; 7:3; 3:2; 1:1; 3:7; 1:9) as eluent gave D-glucose and D-fructose [3], **1** and **2** and a mixture of **2** and **3**. Compound **3** was separated from **2** by CC on silica gel, using a CHCl_3 –MeOH gradient (9:1; 1:4; 3:7; 2:3). Leaves/stems (120 g) of *A. revoluta* gave 986 mg **1**, 277 mg **2** and 22 mg **3**. Flowers (41 g) gave 321 mg **1**, 125 mg **2** and 14 mg **3**.

A. angustifolia Herbert ssp. *angustifolia*: Leaves/stems (72 g) gave 248 mg **1** and 66 mg **2**, whereas flowers (40 g) gave 409 mg **1** and 71 mg **2**.

A. aurea Graham: Leaves/stems (82 g) gave 420 mg **1** and 12 mg **2**, flowers (41 g) gave 442 mg **1** and 47 mg **2**.

A. ligtu L. ssp. *ligtu*: Leaves/stems (76 g) gave 136 mg **1** and less than 6 mg **2**, whereas flowers (46 g) gave 288 mg **1** and 14 mg **2**.

A. ligtu L. ssp. *simsii* (Sprengel) Bayer: Leaves/stems (92 g) gave 517 mg **1** and flowers (53 g) gave 331 mg **1**.

6-Tuliposide A (1). Syrup; R_f 0.56, CHCl_3 –MeOH– H_2O (15:10:2); UV, IR and FAB-MS in accordance with lit. values [3]. ^1H NMR: Table 2; ^{13}C NMR (62.5 MHz, CD_3OD): δ 36.3 (*t*, C-4'), 61.6 (*t*, C-5'), 127.8 (*t*, C-3' α)^a, 127.9 (*t*, C-3' β)^a, 138.7 (*s*, C-2'), 168.3 (*s*, C-1' α)^b,

168.4 (*s*, C-1' β)^b, α -D-glucose: 93.9 (*d*, C-1), 73.7 (*d*, C-2), 75.3 (*d*, C-3)^c, 70.7 (*d*, C-4), 71.9 (*d*, C-5), 65.2 (*t*, C-6), β -D-glucose: 98.2 (*d*, C-1), 76.1 (*d*, C-2)^c, 77.8 (*d*, C-3), 71.7 (*d*, C-4), 74.7 (*d*, C-5)^c, 65.1 (*t*, C-6). ^a ^c Assignments may be interchanged.

Tuliposide D (2). Syrup; R_f 0.71, CHCl_3 –MeOH– H_2O (15:10:2); UV, IR and FAB-MS in accordance with lit. values [3]. ^1H NMR: Table 2; ^{13}C NMR: Table 1.

Tuliposide E (3). Syrup; R_f 0.82, CHCl_3 –MeOH– H_2O (15:10:2); UV λ_{max} (H_2O) nm ($\log \epsilon$): 208 (4.59); IR ν_{max} (film) cm^{-1} : 3409 (OH), 1708 (conjugated ester), 1632 (C=C); FAB-MS m/z : 497 [M + Na]⁺, 475 [M + H]⁺ ($\text{C}_{21}\text{H}_{31}\text{O}_{12}$). ^1H NMR: Table 2; ^{13}C NMR: Table 1.

Acknowledgements—The author thanks the Danish Agricultural and Veterinary Research Council, the Directorate for Agricultural Development and the Danish Working Environment Fund, for financial support.

REFERENCES

1. Christensen, L. P. and Kristiansen, K. (1995) *Contact Dermatitis* **32**, 199.
2. Christensen, L. P. and Kristiansen, K. (1995) *Contact Dermatitis* **33** (in press).
3. Christensen, L. P. (1995) *Phytochemistry* **33**, 1371.
4. Santucci, B., Picardo, M., Iavarone, C. and Trogolo, C. (1985) *Contact Dermatitis* **12**, 215.
5. Slob, A. (1973) *Phytochemistry* **12**, 811.
6. Slob, A., Jekel, B., de Jong, B. and Schlatmann, E. (1975) *Phytochemistry* **14**, 1997.
7. Tschesche, R., Kämmerer, F.-J. and Wulff, G. (1969) *Chem. Ber.* **102**, 2057.
8. Bock, K. and Thøgersen, H. (1982) in *Annual Reports on NMR Spectroscopy*, Vol 13, p. 37, Academic Press, London.
9. Rook, A. (1981) *Contact Dermatitis* **7**, 355.
10. Rycroft, R. J. G. and Calnan, C. D. (1981) *Contact Dermatitis* **7**, 284.
11. Hausen, B. M. (1988) *Allergiepflanzen–Pflanzenallergene: Handbuch u. Atlas d. allergie-induzierenden Wild- und Kulturpflanzen-Kontaktallergene*, p. 67–69, 227–229, 283, Ecomed, Landsberg/München.
12. Bergman, B. H. H., Beijersbergen, J. C. M., Overeem, J. C. and Kaars Sijpestein, A. (1967) *Rec. Trav. Chim. Pays-Bas* **86**, 709.
13. Verspyck Mijnssen, G. A. W. (1969) *Br. J. Dermatol.* **81**, 737.
14. Bayer, E. (1987) *Mitt. Bot. München* **24**, 362.