

ESSENTIAL OIL COMPOSITION OF *CHAMELAUCIUM UNCINATUM*

LOUISE M. EGERTON-WARBURTON and EMILIO L. GHISALBERTI*†

Plant Sciences (Horticulture) and *Department of Chemistry, The University of Western Australia, Nedlands, Perth, Western Australia 6907

(Received 24 January 1995)

Key Word Index—*Chamelaucium uncinatum*; Myrtaceae; Geraldton wax; essential oil; chemotypes.

Abstract—The composition of the essential oils of different genotypes of *Chamelaucium uncinatum* has been examined. The major compounds were identified as α -pinene, citronellal, limonene, linalool and α -terpinyl acetate. Three chemotypes of *C. uncinatum* were identified based on the relative proportions of α -pinene, citronellal and limonene present. Oils with α -pinene as the principal constituent were the most common.

INTRODUCTION

The genus *Chamelaucium* is represented by 33 species, all of which are woody, perennial shrubs endemic to Western Australia [1; Marchant and Chin, unpublished]. Of these, *C. uncinatum* (Geraldton wax) is horticulturally the most important, particularly in the cut-flower trade. Although recognized for a long time as a floriferous and fragrant plant, little work has been carried out on the composition of its essential oil despite the fact that it had been shown to have antibacterial activity [2, 3]. From early investigations [4, 5], (+)- α -pinene was identified as a major compound (30%) of the essential oil. A more recent investigation of *C. uncinatum* var. CWA Pink showed that the oil was composed mainly of α -pinene (44%), β -pinene (16%), citronellal (15%) and limonene (4%) [Dunlop, Ghisalberti and Zwicky (1989) unpublished].

We have initiated a systematic study of the content and composition of the essential oils of *C. uncinatum*, with particular emphasis on delineating infraspecific variations. The results from this investigation are the subject of this report.

RESULTS AND DISCUSSION

Simple hydrodistillation of *C. uncinatum* foliage produced a clear, colourless to pale yellow oil, with a mean yield of 0.43% (range 0.11–2.21%) or ca 51 kg oil ha⁻¹. The essential oil contained 32 compounds in which the major components were α -pinene (bulk %, range) (36.3%, 0.7–72.2), limonene (18.0%, 1.5–81.2), citronellal (16.1%, 0.5–61.9), linalool (4.2%, tr–16.3), geraniol (3.3%, 1.33–5.4), α -terpinyl acetate (3.9%, 4.7–10.0) and globulol

Table 1. Composition of essential oil of *Chamelaucium uncinatum*

Compound	% in oil
Isovaleraldehyde	1.74
4-Methyl-2-pentanol	0.74
4-Methyl-2-pentyl acetate (S-MPA)	1.26
4-Methyl-2-pentyl acetate (R-MPA)	0.70
α -Pinene	36.26
Camphene	0.48
β -Pinene	2.79
β -Myrcene	tr
α -Phellandrene	tr
α -Terpinene	0.68
Limonene	18.04
<i>p</i> -Cymene	0.95
1,8-Cineole	2.00
α -Terpinolene	0.64
Fenchone	tr
Linalool	4.20
Citronellal	16.10
Geraniol	3.30
Neral	0.42
Terpinen-4-ol	0.49
Aromadendrene	tr
α -Terpineol	0.40
Borneol	1.11
α -Terpinyl acetate	3.89
$C_{15}H_{24}$	tr
$C_{15}H_{24}$	tr
Globulol	2.89
Viridiflorol	0.64
$C_{15}H_{26}O$	tr
$C_{15}H_{26}O$	tr
Eudesmol	0.61
$C_{15}H_{24}O$	tr

†Author to whom correspondence should be addressed.

tr < 0.1%.

(2.9%, 2.0–3.9) (Table 1). A number of other mono- and sesquiterpenes present in small (< 3%) or trace (< 0.2%) quantities accounted for 10.4 and 4.2% of the oil, respectively.

Based on the considerable variation in the major constituents, three chemotypes were assigned to *C. uncinatum* oils (Fig. 1); distinct chemical forms also occur in other myrtaceous genera [6]. Type 1 oils were characterized by high citronellal and geraniol contents. Type 2 and 3 oils both contained a high percentage of α -pinene and a low citronellal content; these oils were further differentiated by the high levels of limonene in Type 3. Type 2 oils ($n = 180$) predominated in the assayed populations of *C. uncinatum*, followed by Type 1 ($n = 56$) and Type 3 ($n = 42$). In this context, it is worth noting that the essential oils of the taxonomically related genera *Asteromyrtus*, *Thryptomene* and *Neofabricia* may contain primarily α -pinene [7–9], rather than 1,8-cineole and/or

terpinen-4-ol, which dominate the oils in other members (e.g. *Eucalyptus* and *Melaleuca*) of the Myrtaceae [6, 10].

From a biosynthetic perspective, Type 1 is the least complex, favouring production of citronellal, an oxygenated acyclic monoterpene. Types 2 and 3 produce more monoterpene hydrocarbons, with the structurally more complex α -pinene dominating the composition of Type 2 oils. Also interesting is the formation of 4-methyl-2-pentyl acetate, a metabolite only recently isolated from the essential oils of some *Eucalyptus* species [11]. Whereas the *R*-enantiomer predominates in *Eucalyptus* species, the *S*-enantiomer is favoured in *C. uncinatum* (Table 1).

EXPERIMENTAL

Plant material. *C. uncinatum* Schauer was collected in south-western Australia during 1991 from 44 locations covering the geographic range of the species (27–32°S distance 600 km, 114–116°E, distance 120 km). The material was vegetatively propagated and then planted out in a managed plot at Shenton Park, Western Australia (31°57'S, 115°51'E, 19 m above sea level).

Isolation of leaf oil. Foliage was collected from 278 plants, with 100 g of material from each plant hydrodistilled individually at atmos. pressure until no more oil was seen to be condensing (3 hr).

Analysis. Oil samples were analysed by GC on a Cydex-B column (β -cyclodextrin and Si, 25 m \times 0.22 mm i.d.) using 30:1 split injection (injector temp. 240°; FID temp. 250°). The oven temp. was prog. from 75° (isothermal for 5 min) with a ramp of 4° min $^{-1}$ to 220°, ending with a 5 min isothermal at 220°. The identity of compounds was confirmed by co-injection of authentic samples, comparison with GC retention data for standard compounds on two other columns of differing polarity (BP1, OV101) and GC-MS, using identical analytical conditions.

Acknowledgements—We thank Mr D. Growsn for the initial collection and propagation of material, Messrs B. Harrison and T. Spadek for MS, Mr P. Grayling for access to distillation and GC facilities, and the Western Australian Department of Agriculture and the Rural Industries Research and Development Corporation (Australia) for financial support. The interest and support of Professor J. Considine is gratefully acknowledged.

REFERENCES

- Elliot, W. R. and Jones, D. L. (1984) *Encyclopaedia of Australian Plants Suitable for Cultivation*, Vol. 3. Lothian Publications, Melbourne.
- Atkinson, N. and Brice, H. E. (1955) *Aust. J. Exp. Biol. Med. Sci.* **33**, 547.
- Atkinson, N. (1949) *Med. J. Austr.* **1**, 605.
- Watson, E. M. (1944) *J. Roy. Soc. WA*, **30**, 83.
- Bowyer, R. C. (1957) B.Sc. (Hons) Thesis. University of Western Australia, Perth.
- Williams, L. R. and Lusunzi, I. (1994) *Indust. Crops Prod.* **2**, 211.

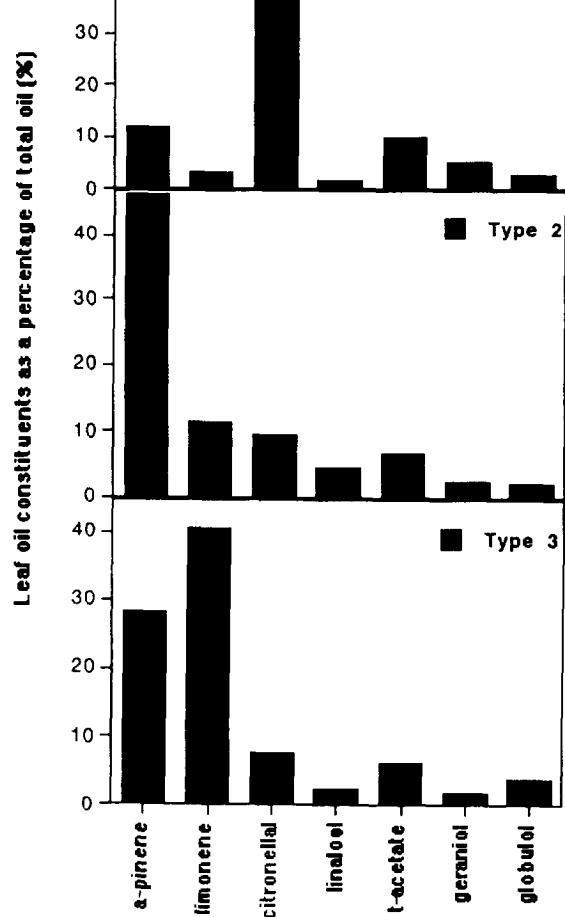


Fig. 1. Major leaf oil constituents as a percentage of the total oil in three chemotypes of *Chamelaucium uncinatum*.

7. Dastlik, K., Ghisalberti, E. L. and Jefferies, P. R. (1989) *Phytochemistry* **28**, 3543.
8. Brophy, J. J. and Clarkson, J. R. (1992) *Biochem. Syst. Ecol.* **20**, 689.
9. Brophy, J. J., Clarkson, J. R., Craven, L. A. and Forrester, R. I. (1994) *Biochem. Syst. Ecol.* **22**, 409.
10. Brooker, M. I. H., Barton, A. F. M., Rockel, B. A. and Tjandra, J. (1988) *Aust. J. Botany* **36**, 119.
11. Grayling, P. M. and Knox, J. R. (1991) *J. Nat. Prod.* **54**, 295.