

16-EPI-SILICINE, AN ALKALOID OF THE ERVATAMINE-TYPE FROM *PANDACA CADUCIFOLIA*

PASCAL CLIVIO, BERNARD RICHARD, JEAN-MARC NUZILLARD and MONIQUE ZÈCHES-HANROT*

Faculté de Pharmacie (U.R.A. au C.N.R.S. n° 492), 51, rue Cognacq-Jay, 51096 Reims Cedex, France

(Received 24 January 1995)

Key Word Index: *Pandaca caducifolia*: Apocynaceae; indole alkaloid; silicine; 16-*epi*-silicine; NMR.

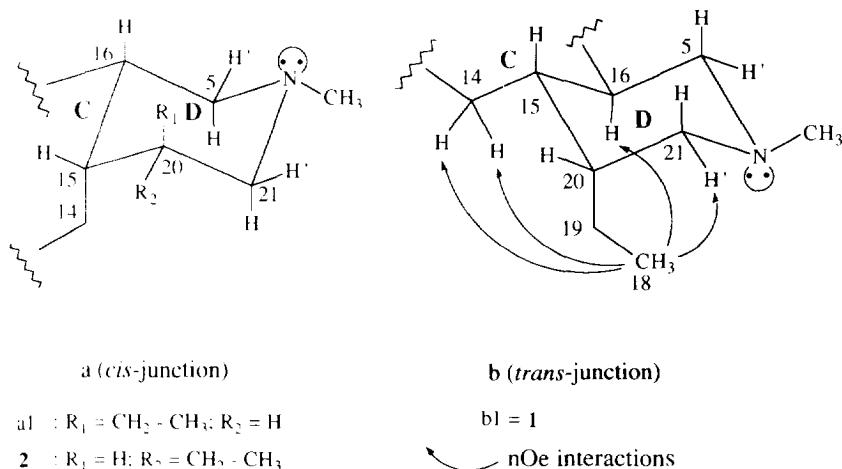
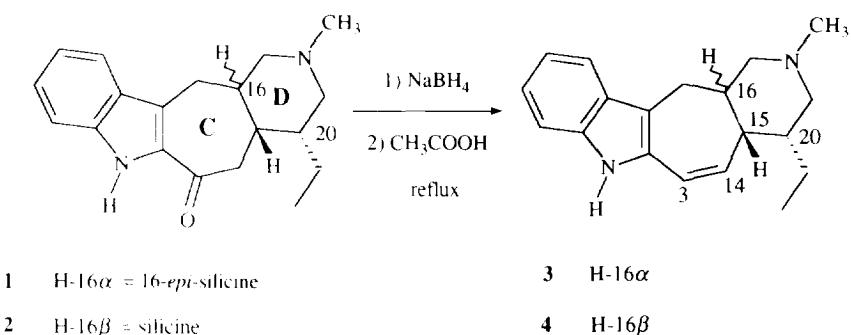
Abstract—The structures of two ervatamine-type alkaloids previously isolated from *Pandaca caducifolia* are established as the known silicine and the new 16-*epi*-silicine after careful NMR analysis of the two compounds and their olefinic derivatives.

INTRODUCTION

Alkaloids of the ervatamine-type are well known to possess various pharmacological activities [1, 2]. Furthermore, structure-activity relationships have demonstrated that the junction between the C and D rings is critical for their biological activities [3]. In the course of our studies on *Ervatamia* species [4-7], we have carried out careful NMR analysis of several alkaloids with an ervatamine skeleton isolated from *E. malaccensis* [4, 5] and also completed previous NMR data of several known compounds belonging to this group. This was the opportunity to complete the structural elucidation of alkaloid **J** to be **1**, previously isolated from *Pandaca caducifolia* [8, 9]. This compound was found to be an isomer of alkaloid **K**, also present in this species, which was identified as silicine (**2**) by a comparison with an authentic sample. Silicine (**2**) has been isolated from *Rauvolfia discolor* [10] and occurs also in *Hazunta* ssp. [11-14]. A vobasinic structure was first proposed [10]. This was then revised to 16-demethoxycarbonyl-20-*epi*-ervatamine and fully established by X-ray analysis [15, 16]. We report herein on the structure of 16-*epi*-silicine (**1**) according to NMR data.

RESULTS AND DISCUSSION

Alkaloid **J** (**1**) and silicine (**2**) were isolated from the stem bark, root bark and leaves of *P. caducifolia* together with 10 other alkaloids whose structural determinations are reported elsewhere [9, 17]. In the case of **1**, if the configuration 15- β -H is fixed for biogenetical reasons [18, 19], the configurations at C-16 and C-20 still remain unknown. The structure and conformation of **1** were



established by analysis of NMR data and comparison with those of silicine (**2**) as follows.

Signals in the ^1H NMR and ^{13}C NMR spectra of **1** and **2** (Tables 1 and 2) were unambiguously assigned by 2-D experiments. Direct deduction of the junction geometry between the C and D rings of **1** from the H-15/H-16 coupling constant was impossible because of the complexity of their signals and overlapping with other resonances. Selective decoupling experiments and chemical shift variations induced by *N*-(4) oxidation were unsuccessfully tried to simplify these signals. The problem was solved by analysing the D ring protons signals of **1** and by comparison with those of silicine (**2**) which has a *cis*-C/D ring junction and an α -equatorial ethyl side-chain [16].

In both cases (**1** and **2**), the equatorial protons of methylenes CH₂-5 and CH₂-21 were identified by their long-range W-coupling. Their rather high down-field shift ($\Delta\delta = +1$ ppm) compared with the respective axial protons, H-5 and H-21, favours an axial orientation of the *N*-(4) doublet. Moreover, the large coupling constant H-5/H-16 ($J = 10.8$ Hz for **1** and 11.3 Hz for **2**) reveals an axial orientation of H-16. Therefore, the D ring of silicine (**2**) adopts the same conformation in solution as in the solid state (a) [16], while two chair conformations (a and b) are still possible for compound **1** because of the unknown coupling constant between H-15 and H-16.

The axial position of the ethyl side-chain at C-20 of **1** (a₁ or b₁) was deduced from the small coupling constant H-20/H-21 ($J = 2.2$ Hz) by comparison with that of **2** ($J = 11.4$ Hz), in which the ethyl group is α -equatorial. Furthermore, the observation in **1** of nOes between the terminal CH₃-18 and H-21' (eq), H-14, H-14' and H-16, indicated a *trans*-junction between the C and D rings (b₁), and then an α axial ethyl chain configuration. Compound **1** is therefore the 16-*epimer* of silicine (**2**).

*Author to whom correspondence should be addressed.

To confirm this structure, we have compared NMR data of the olefinic derivatives **3** and **4** obtained from **1** and **2**, respectively. In **3**, the H-15 proton shows a H-15/H-16 coupling constant (*J* = 10.8 Hz) fully in agreement with the axial orientations of H-15 and H-16 and a C/D *trans*-junction. In **4**, H-15 appears as a broad singlet consistent with its equatorial orientation and, therefore, a C/D *cis*-junction.

Analysis of the ¹³C NMR data of **1–4** shows that changing from the *cis*-series (**2** and **4**) to the *trans*-series (**1–3**) results in deshielding of C-5, C-6, C-7, C-14, C-15 and C-20. This can be interpreted by a more planar geometry of the molecule that releases the steric compression observed in the *cis*-compounds. Conversely, C-19 becomes shielded according to its change from the equatorial to the axial position. These observations fully agree with the proposed conformation of **1** as **b**.

It should be noted that the majority of ervatamine-type alkaloids belong to the *cis*-C/D series. In the *trans*-series, besides 16-*epi*-methuenine and its *N*-(4)-oxy derivative, alkaloid **1** appears to be the third example of this type. To the best of our knowledge, this compound has only been isolated from *P. caducifolia*.

EXPERIMENTAL

General. ¹H and ¹³C NMR were recorded at 300 and 75 MHz, respectively. Chemical shifts are reported in δ from TMS. 1-D (¹H and ¹³C) and 2-D expts were performed using standard Bruker microprograms.

Plant material. *Pandaca caducifolia* Mgf. was collected at Sahafary, in the Diego Suarez region of northeast Madagascar. Sample was directly compared with holotype, Capuron 20179.

Extraction and isolation. Isolation of **1** and **2** from stem bark, root bark and leaves of *P. caducifolia* is reported in refs [8, 19].

16-*epi*-Silicine (1). Ceric-spray: greenish. Mp 153°. $[\alpha]_D + 20^\circ$ (CHCl₃; c 1). UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm: 213, 238, 314. IR $\nu_{\text{max}}^{\text{CHCl}_3}$ cm⁻¹: 3300, 2940, 2780, 1630, 1580, 1540, 1460, 1330. MS *m/z* (rel. int.): 296 [M]⁺ (100), 267 (11), 253 (8), 138 (40), 130 (14), 124 (27), 98 (13). ¹H, ¹³C NMR (COSY, NOESY, XHCORRD, COLOC): see Tables 1 and 2.

Silicine (2). Ceric-spray: greenish. Mp 95–102°. $[\alpha]_D - 20^\circ$ (CHCl₃; c 1). UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm: 213, 238, 314. IR $\nu_{\text{max}}^{\text{CHCl}_3}$ cm⁻¹: 3280, 2920, 2780, 1630, 1560, 1520, 1450, 1320. MS *m/z* (rel. int.): 296 [M]⁺ (64), 268 (5), 199 (10),

Table 1. ^1H NMR data (300 MHz) of compounds **1–4** (δ ; Hz)

H	1*	2*	3†	4†
3	—	—	6.26 <i>dd</i> (12.2, 2.8)	6.34 <i>dd</i> (12.3, 2.9)
5	1.78 <i>t</i> (10.8)	1.98 <i>t</i> (11.3)	1.65 <i>t</i> (11.3)	1.95 <i>t</i> (11.2)
5'	2.97 <i>ddd</i> (10.8, 3.6, 1.3)	2.95 <i>ddd</i> (11.3, 3.9, 1.1)	2.91 <i>ddd</i> (11.3, 3.5, 1.2)	2.38 <i>bd</i> (11.2)
6	2.83 <i>dd</i> (16.4, 6.5)	2.45 <i>dd</i> (15.1, 9.9)	2.39 <i>dd</i> (15.7, 10.3)	2.92 <i>dd</i> (16.5, 3.4)
6'	3.17 <i>dd</i> (16.4, 6.5)	3.42 <i>dd</i> (15.1, 6.9)	2.71 <i>dd</i> (15.7, 1.6)	3.01 <i>dd</i> (16.5, 4.7)
9	7.67 <i>bd</i> (8.1)	7.70 <i>bd</i> (7.0)	7.30 <i>bd</i> (7.0)	7.30 <i>bd</i> (7.1)
10	7.15 <i>ddd</i> (8.1, 7.3, 1.2)	7.16 <i>td</i> (7.0, 1.0)	6.89 <i>td</i> (7.0, 1.2)	6.87 <i>td</i> (7.1, 0.8)
11	7.34 <i>ddd</i> (8.1, 7.3, 1.2)	7.34 <i>td</i> (7.0, 1.0)	6.95 <i>td</i> (7.0, 1.2)	6.94 <i>td</i> (7.1, 0.8)
12	7.41 <i>bd</i> (8.1)	7.41 <i>bd</i> (7.0)	7.14 <i>bd</i> (7.0)	7.12 <i>bd</i> (7.1)
14–14'	2.82 <i>d</i> (5.7)	2.49–2.60 <i>m</i>	5.37 <i>dd</i> (12.2, 2.5)	5.43 <i>dd</i> (12.3, 1.0)
15	1.73–1.83 <i>m</i>	2.04–2.13 <i>m</i>	2.3 <i>ddt</i>	2.75 <i>bs</i>
	—	—	(10.8, 4.0, 2.8)	(W 1/2:9)
16	2.18–2.32 <i>m</i>	2.23–2.60 <i>m</i>	1.83–1.94 <i>m</i>	2.26–2.38 <i>m</i>
18	0.97 <i>t</i> (7.4)	0.86 <i>t</i> (7.4)	0.78 <i>t</i> (7.4)	0.86 <i>t</i> (7.4)
19	1.33–1.47 <i>m</i>	1.28–1.47 <i>m</i>	1.20–1.40 <i>m</i>	1.22–1.36 <i>m</i>
19'	1.55–1.73 <i>m</i>	1.28–1.47 <i>m</i>	1.20–1.40 <i>m</i>	1.22–1.36 <i>m</i>
20	1.55–1.73 <i>m</i>	1.72–1.85 <i>m</i>	1.46–1.57 <i>m</i>	1.68–1.80 <i>m</i>
21	1.87 <i>ddd</i> (11.3, 2.2, 1.0)	1.60 <i>t</i> (11.4)	1.83–1.94 <i>m</i>	1.68–1.80 <i>m</i>
21'	2.92 <i>dt</i> (11.3, 1.7)	2.68 <i>bd</i> (11.4)	2.86 <i>dt</i> (11.3, 2.0)	2.53 <i>bd</i> (7.8)
N(4)CH ₃	2.25 <i>s</i>	2.33 <i>s</i>	2.15 <i>s</i>	2.05 <i>s</i>
NH	9.15 <i>bs</i>	9.42 <i>bs</i>	‡	‡

*CDCl₃.†CDCl₃ + CH₃OD (two drops).

‡NH exchanged.

Table 2. ^{13}C NMR data (75 MHz) of compounds **1–4** (δ ; CDCl₃)

C	1	2*	3	4
2	132.6	132.4	131.9	132.3
3	194.4	195.2	119.1	121.3
5	63.5	58.6	63.9	56.1
6	27.2	25.8	29.5	27.7
7	123.1	121.6	113.2	110.4
8	127.5	127.1	128.4	128.5
9	120.5	120.6	118.0	117.5
10	120.0	120.0	119.3	118.5
11	126.1	126.2	121.6	121.5
12	112.3	112.2	110.6	110.3
13	136.7	136.8	135.2	135.5
14	46.9	35.4	134.5	126.1
15	42.0	35.4	49.8	41.9
16	35.9	35.4	32.9	37.1
18	12.8	11.4	13.0	10.9
19	18.8	23.7	19.6	23.5
20	43.1	41.1	43.3	42.5
21	57.8	57.3	57.7	56.4

*Data in agreement with ref. [12].

172 (4), 138 (30), 130 (16), 124 (100), 122 (8), 98 (18). ^1H , ^{13}C NMR (COSY, NOESY, XHCORRD, COLOC); see Tables 1 and 2.

Dehydroxy-16-*epi*-silicinol (3). To a soln of **1** (30 mg) in MeOH (2 ml), 10 mg of NaBH₄ was added slowly. The mixt. was stirred for 2 hr at room temp., then dil with H₂O and extracted with CH₂Cl₂. The organic layer was washed with H₂O, dried over Na₂SO₄ and evapd under red. pres. The residue was dissolved in 1 ml HOAc and the soln refluxed for 3 hr. The soln was then basified with Na₂CO₃ and extracted with CH₂Cl₂. The organic layer was washed, dried and evapd to give a residue (15 mg; yield 53%) which contained **3** in a pure state. Ceric-spray: yellowish. UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm: 238, 307 sh, 316, 323 sh, 338 sh. IR $\nu_{\text{max}}^{\text{CHCl}_3}$, cm^{−1}: 3220, 2960, 2920, 2860, 2780, 1650. MS *m/z* (rel. int.): 280 [M]⁺ (100), 265 (16), 251 (16), 237 (13), 236 (13), 222 (16), 208 (16), 194 (14), 180 (19), 168 (12), 167 (12), 138 (30), 137 (16), 124 (10); ^1H , ^{13}C NMR (COSY, HMBC, HMQC); see Tables 1 and 2.

Dehydroxy silicinol (4). From **2** (30 mg), the same process gave **4** (16 mg) in a pure state. Ceric-spray: yellowish. UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm: 241, 310 sh, 318, 326 sh, 342 sh. IR $\nu_{\text{max}}^{\text{CHCl}_3}$, cm^{−1}: 2920, 1630, 1460. MS *m/z* (rel. int.): 280

$[M]^+$ (79), 279 (14), 265 (3), 251 (8), 237 (5), 180 (11), 124 (100), 98 (23). ^1H , ^{13}C NMR (COSY, HMBC, HMQC): see Tables 1 and 2.

Acknowledgements—This work is dedicated to the memory of Prof. J. Le Men, initiator of the chemical study of *P. caducifolia*. We are indebted to Prof. Dr P. Potier for providing sample and copies of spectra of silicine (**2**). We are also grateful to Prof. L. Le Men-Olivier for fruitful discussions.

REFERENCES

1. Frelin, C., Vigne, P., Ponzio, G., Romey, G., Tourneur, Y., Husson, H.-P. and Lazdunski, M. (1981) *Molec. Pharmacol.* **20**, 107.
2. Sauviat, M.-P. (1984) *Acta Pharmacol. Sinica* **5**, 92.
3. Bakana, P., Laekeman, G. M., Totte, J., Herman, A. G. and Vlietinck, A. J. (1985) *J. Nat. Prod.* **48**, 766.
4. Clivio, P. (1989) Thesis, Université de Reims Champagne Ardenne, France, n°. 201.
5. Clivio, P., Richard, B., Zèches, M., Le Men-Olivier, L., Goh, S. H., David, B. and Sévenet, T. (1990) *Phytochemistry* **29**, 2693.
6. Clivio, P., Richard, B., Hadi, H. A., David, B., Sévenet, T., Zèches, M. and Le Men-Olivier, L. (1990) *Phytochemistry* **29**, 3007.
7. Clivio, P., Richard, B., Deverre, J. R., Sévenet, T., Zèches, M. and Le Men-Olivier, L. (1991) *Phytochemistry* **30**, 3785.
8. Zèches-Hanrot, M. (1975) Thesis, Université de Reims Champagne Ardenne, France, n°. 102.
9. Zèches, M., Debray, M.-M., Ledouble, G., Le Men-Olivier, L. and Le Men, J. (1975) *Phytochemistry* **14**, 1122.
10. Combes, G., Fonzes, L. and Winternitz, F. (1968) *Phytochemistry* **7**, 477.
11. Bui, A.-M., Debray, M.-M., Boiteau, P. and Potier, P. (1977) *Phytochemistry* **16**, 703.
12. Vecchieti, V., Ferrari, G., Orsini, F., Pelizzoni, F. and Zajotti, A. (1978) *Phytochemistry* **17**, 835.
13. Bui, A.-M., Potier, P., Urrea, M., Clastres, A., Laurent, D. and Debray, M.-M. (1979) *Phytochemistry* **18**, 1329.
14. Bui, A.-M., Das, B.-C. and Potier, P. (1980) *Phytochemistry* **19**, 1473.
15. Shafee, A., Ahond, A., Bui, A.-M., Langlois, Y., Riche, C. and Potier, P. (1976) *Tetrahedron Letters* 921.
16. Riche, C. and Pascard-Billy, C. (1977) *Acta Crystallogr.* **B33**, 133.
17. Zèches, M., Lukacs, G., Massiot, G. and Le Men-Olivier, L. (1982) *J. Nat. Prod.* **45**, 707.
18. Husson, A., Langlois, Y., Riche, C., Husson, H.-P. and Potier, P. (1973) *Tetrahedron* **29**, 3095.
19. Thal, C., Dufour, M., Potier, P., Jaouen, M. and Mansuy, D. (1981) *J. Am. Chem. Soc.* **103**, 4956.