

Phytochemistry, Vol. 41, No. 1, pp. 237-242, 1996 Elsevier Science Ltd Printed in Great Britain 0031-9422/96 \$15.00 + 0.00

HANG-CHING LIN,*† HSIOU-YU DING,† TIAN-SHUNG WU*‡ and PEI-LIN WU‡

MONOTERPENE GLYCOSIDES FROM PAEONIA SUFFRUTICOSA

†School of Pharmacy, National Defense Medical Center, Taipei, Taiwan, R.O.C.; †Department of Chemistry, National Cheng Kung University, Tainan, Taiwan, R.O.C.

(Received in revised form 5 June 1995)

Key Word Index—*Paeonia suffruticosa*; Ranunculaceae; monoterpene glycoside; mudanpiosides; mudanpi.

Abstract—Six new monoterpene glycosides, namely mudanpioside-A to -F, were isolated as minor components from an ethanol extract of the root cortex of *Paeonia suffruticosa*. Their structures have been established on the basis of spectral evidence. In addition, five known glycosides, paeoniflorin, oxypaeoniflorin, benzoylpaeoniflorin and apiopaeonoside, were also isolated and characterized.

INTRODUCTION

The root cortex of Paeonia suffruticosa Anhr. (P. moutan SIM) (Chinese name: mudanpi) is a well known traditional Chinese medicine and has been used as an analgesic, sedative and anti-inflammatory agent, and as a remedy for cardiovascular, extravasated blood, stagnated blood and female genital diseases [1-4]. Chemical and pharmacological studies on P. suffruticosa have been carried out by many investigators since 1887 [5-23]. In the previous paper, we reported on the isolation and structural identification of several acetophenones from the root cortex of the same plant [21]. In a continuation of our phytochemical studies on the constituents of this plant, we present here the isolation and structural elucidation of six new monoterpene glycosides, mudanpioside-A (1), -B (2), -C (3), -D (4), -E (5) and -F (6), in addition to five known glycosides, paeoniflorin (7) [24], oxypaeoniflorin (8) [10], benzoylpaeoniflorin (9) [10], benzoyloxypaeoniflorin (10) [11] and apiopaeonoside (11) [13], from the polar fraction of an ethanol extract.

RESULTS AND DISCUSSION

The IR, ¹H and ¹³C NMR spectral data for compounds 1-5 resembled closely those for the known compounds 7-10 which were also isolated in the course of this work from *P. suffructicosa* (Tables 1 and 2). This suggested that compounds 1-5 were mono- or di-benzoates of monoterpene glycosides, the difference between them being in the substitution pattern of the aromatic rings. However, compound 6 was a monoterpene glycoside without any acyloxy substituent.

Compound 1 gave rise to a quasimolecular ion peak at m/z 613 [M – H] on FAB-mass spectroscopy. High mass measurement established the molecular formula as C₃₁H₃₄O₁₃. The ¹H NMR spectrum revealed signals assignable to a monoterpene i.e. signals for: two methylenes at δ 2.26 and 2.39 (d, J = 11.8 Hz) (H-3) and δ 2.19 (d, J = 10.6 Hz) and 2.83 (dd, J = 10.6, 6.7 Hz) (H-6), a methylene bearing an acyloxy functionality at $\delta 5.00$ and 5.15 (d, J = 12.1 Hz) (H-8), one methine at $\delta 3.02$ (d, J = 6.7 Hz) (H-5), a methine adjacent to two heteroatoms at δ 5.89 (s) (H-9) and a methyl at δ 1.67 (s) (H-10). In addition, the glucose moiety accounted for signals at $\delta 4.02 (t, J = 7.3 \text{ Hz}) \text{ for H-2'}, 4.07 (t, J = 7.3 \text{ Hz}) \text{ for H-4'},$ 4.09 (t, J = 7.3 Hz) for H-5', 4.19 (t, J = 7.3 Hz) for H-3',5.10 (d, J = 7.3 Hz) for H-1', 4.95 (dd, J = 10.8, 7.3 Hz) and 5.17 (d, J = 10.8 Hz) for two H-6'. The remaining signals disclosed the presence of two aryloxy groups; one set for a simple benzoyloxy unit at $\delta 7.27$ (t, J = 7.6 Hz, H-3" and H-5"), 7.41 (t, J = 7.6 Hz, H-4") and 8.09 (d, J = 7.6 Hz, H-2" and H-6"), and the other for a pmethoxybenzoyloxy unit at $\delta 6.98$ (d, J = 8.8 Hz, H-3" and H-5", 8.23 (d, J = 8.8 Hz, H-2" and H-6") and 3.65 (s, 4"'-OMe). The presence of these groups was also supported by the fragment ion peaks at m/z 121 and 151, the former due to the benzoyloxy fragment, the latter to the p-methoxybenzoyloxy fragment. COSY, HMQC, HMBC and NOESY experiments (HMBC and NOESY, Fig. 1) allowed the complete connectivities and assignments of the ¹H and ¹³C NMR spectral data and established the location of substitution on the monoterpene and benzene ring systems. Further, the HMBC experiment showed a notable cross-peak between C-7" and H-8. This phenomenon proved the attachment of the benzoyloxy group to C-8 of the monoterpene, and, of course, the other p-methoxybenzoyloxy to C-6' of glucose. Based on above spectral analyses, the structure of mudanpioside-A was deduced as 1 with six chiral centres.

^{*}Author to whom correspondence should be addressed.

Table 1. ¹H NMR spectral data for compounds 1-6 (pyridine- d_3 , δ , multi, J, Hz)

=		2	3	4	8	9
						and the second s
3	2.26 (d, 11.8) and	2.25 (d, 12.2) and	2.22 (d, 12.3) and	2.31 (d, 12.2) and	2.30 (d. 12.0) and	5.78 (quintet, 1.8)
	2.39 (d, 11.8)	2.40 (d, 12.2)	2.40 (d, 12.3)	2.49 (d, 12.2)	2.49 (d, 12.0)	
5	3.02 (d, 6.7)	3.04 (d, 6.7)	2.98 (d, 6.9)	3.09 (d, 6.8)	3.13 (4, 6.8)	2.95 (dd, 7.2, 2.5)
9	2.19 (d, 10.6) and	2.18 (d, 10.7) and	2.18 (d, 10.6) and	2.32 (d, 10.5) and	2.33 (d, 10.8) and	2.63 (d, 9.3) and
	2.83 (dd, 10.6, 6.7)	2.85 (dd, 10.7, 6.7)	2.79 (dd, 10.6, 6.9)	2.91 (dd, 10.5, 6.8)	2.92 (dd, 10.8, 6.8)	3.55 (dd, 9.3, 7.2)
∞	5.00 (d, 12.1) and	5.01 (d, 16.5) and	$4.9-5.0 \ (m) \ and$	5.12 (d, 12.1) and	5.16 (d, 12.1) and	4.10 (d, 12.1) and
	5.15 (d, 12.1)	5.17 (d, 16.5)	5.10 (d, 11.5)	5.23 (d, 12.1)	5.28 (d, 12.1)	4.46 (d, 12.1)
6	5.89 (s)	5.90 (s)	5.85 (s)	5.94 (s)	5.97 (s)	1.31 (s)
10	1.67 (s)	1.64 (s)	1.63 (s)	1.67 (s)	1.68 (s)	2.12 (d, 1.8)
1,	5.10 (d, 7.3)	5.12 (d, 8.4)	5.07 (d, 8.3)	5.17 (d, 7.6)	5.20 (d, 8.5)	5.15 (d, 8.5)
2,	4.02 (t, 7.3)	4.02 (t, 8.4)	3.95-4.05 (m)	4.06 (t, 7.6)	4.06 (t, 8.5)	4.04 (t, 8.5)
3,	4.19 (t, 7.3)	4.22 (t, 8.4)	4.15 (t, 8.1)	4.22 (t, 7.6)	4.24 (t, 8.5)	4.20 (t, 8.5)
, 4	4.07 (t, 7.3)	4.06 (t, 8.4)	3.95-4.05 (m)	4.18 (t, 7.6)	4.19 (t, 8.5)	4.16 (t, 8.5)
۶,	4.09 (t, 7.3)	4.09 (dd, 8.4, 6.9)	3.95-4.05 (m)	3.94 (dd, 7.6, 6.0)	3.95 (dd, 8.5, 6.1)	3.90 (m)
,9	4.95 (dd, 10.8, 7.3) and	4.96 (dd, 10.8, 6.9) and	4.9-5.0 (m)	4.32 (dd, 10.8, 6.0) and	4.34 (dd, 10.8, 6.1) and	4.29 (dd, 11.7, 5.4) and
	5.17 (d, 10.8)		and 5.14 (d, 10.0)	4.53 (d, 10.8)	4.54 (d, 10.8)	4.44 (d, 11.7)
2″	8.09 (d, 7.6)	8.12 (d, 8.3)	8.04 (d, 7.4)	8.13 (d, 8.6)	7.82 (d, 1.9)	
3"	7.27 (t, 7.6)	7.03 (d, 8.3)	7.23 (t, 7.4)	6.88 (4, 8.6)		
4,	7.41 (t, 7.6)		7.38 (t, 7.4)			
2″	7.27 (t, 7.6)	7.03 (d, 8.3)	7.23 (t, 7.4)	6.88 (d, 8.6)	7.11 (d, 8.3)	
.9	8.09 (d, 7.6)	8.12 (d, 8.3)	8.04 (d, 7.4)	8.13 (d, 8.6)	7.87 (dd, 8.3, 1.9)	
2,,,'6,,,	8.23 (d, 8.8)	8.23 (d, 8.3)	8.22 (d, 8.8)			
3′′′,5′′′	6.98 (d, 8.8)	6.98 (d, 8.3)	7.12 (d, 8.8)			
OMe	3.65 (s)	3.65 (s)		3.67 (s)	3.69 (s)	

Table 2	13C NMR	spectral	data for	compounds	1-10	(pyridine-d ₅)
1 aug 2.	CHIMIN	SUCCLIAL	uala ivi	COMPOUNTS	1 10	(DATIMITIC-ME)

C	1	2	3	4	5	6	7	8	9	10
1	88.7	88.7	88.9	88.7	88.7	84.4	88.8	88.7	88.8	88.8
2	85.8	85.8	86.0	85.8	85.8	173.4	86.0	85.9	85.9	85.9
3	44.5	44.5	44.7	44.6	44.6	121.3	44.6	44.6	44.6	44.6
4	105.7	105.7	105.9	105.8	105.8	201.1	105.8	105.8	105.8	105.8
	43.6	43.6	43.8	43.7	43.8	48.1	43.7	43.7	43.7	43.7
5 6	22.7	22.7	22.8	23.3	23.4	43.4	23.4	23.4	22.8	22.8
7	71.3	71.4	71,4	71.6	71.7	63.6	71.5	71.6	71.6	71.6
8	61.2	60.6	61.4	60.9	60.8	66.3	61.3	60.8	61.2	60.6
9	101.5	101.5	101.6	101.6	101.6	16.1	101.5	101.6	101.5	101.6
10	19.6	19.6	19.8	19.6	19.7	19.9	19.7	19.7	19.7	19.7
1'	100.1	100.1	100.3	100.1	100.2	99.8	100.2	100.2	100.1	100.1
2'	74.9	74.7	74.9	74.8	74.9	74.7	74.7	74.7	74.7	74.7
3′	78.0	78.0	78.3	78.3	78.4	78.5	78.2	78.1	78.0	78.0
4′	71.6	71.6	71.8	71.6	71.6	71.6	71.5	71.6	71.3	71.4
5′	75.0	74.9	75.0	78.2	78.2	78.5	78.2	78.1	74.9	74.9
6′	64.7	64.6	64.7	62.7	62.7	62.6	62.7	62.6	65.0	65.0
1"	130.4	121.1	130.6	122.7	121.3		130.4	121.1	130.5	121.1
2"	129.8	132.2	129.9	131.8	113.3		129.8	132.3	129.8	132.3
3"	128.6	115.9	128.7	113.9	148.1		128.7	116.0	128.8	116.0
4"	133.2	163.4	133,2	163.6	153.0		133.2	163.3	133.2	163.5
5"	128.6	115.9	128.7	113.9	115.9		128.7	116.0	128.8	116.0
6"	129.8	132.2	129.9	131.8	124.5		129.8	132.3	129.8	132.3
7"	166.2	166.4	166.6	166.1	166.5		166.4	166.5	166.4	166.6
1′′′	122.7	123.3	121.6						130.7	130.7
2"',6"'	131.8	131.8	132.4						129.8	129.8
3''',5'''	114.1	114.0	116.2						128.6	128.8
4'''	163.6	163.7	163.7						133.2	133.3
7'''	166.4	166.0	166.6						166.3	163.3
OMe	55.2	55.2		55.2	55.5					

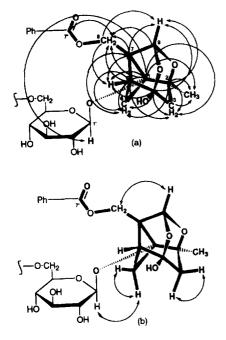


Fig. 1. Selected (a) HMPC (b) NOESY correlations for mudanpioside-A (1).

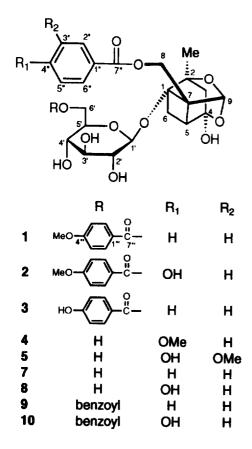
The four mudanpiosides -B (2), -C (3), -D (4) and -E (5) were indicated to have molecular formulae of C₃₁H₃₄O₁₄, $C_{30}H_{32}O_{13}$, $C_{24}H_{30}O_{12}$ and $C_{24}H_{30}O_{13}$, respectively, by negative HR FAB-mass spectrometry. The ¹H NMR data showed that compound 2 was made up of same monoterpene nucleus as 1, a p-hydroxybenzoyloxy group and a p-methoxybenzoyloxy group. The positions of the two para-disubstituted benzene rings could be differentiated by the HMBC spectrum (Table 3). The one with the methoxyl substituent was attached to the glucose moiety as shown by the long-range couplings between C-7"'/H-6', H-2"', H-6" as well as C-4"'/H-2", H-6", 4"-OMe while the other substituent was attached to the monoterpene nucleus. Thus, compared to 1, the p-hydroxybenzoyl group in 3 replaced the p-methoxybenzoyl substituent on the glucose moiety. Compound 4 had a methoxybenzoyloxy group connected to C-8, but no benzoyl substituent on the glucose moiety. Similarly, 5 had a 4-hydroxy-3methoxybenzoyloxy on C-8 and no benzoyl substituent. All the connectivities were further supported by HMBC (Table 3) and NOESY experiments. Consequently, the structures of mudanpioside-B to -E were established to be as shown by structures 2-5.

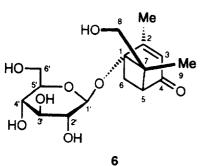
The sixth optically active mudanpioside, -F (6) was shown to have the molecular formula $C_{16}H_{24}O_8$. Its

Table 3. HMBC spectral data for compounds 1, 2 and 4-6 (pyridine-d₅)

C	1	2	4	5	6
1	H-3, -5, -6, -8, -10, -1'	H-3, -5, -6, -8, -9, -10, -1'			
2	H-3, -6, -9, -10	H-3, -6, -9, -10	H-3, -6, -9, -10	H-3, -6, -9, -10	H-3, -6, -10
3	H-10	H-10	H-10	H-10	H-10
4	H-3, -5, -6, -9	H-3, -5, -6, -9	H-3, -5, -6, -9	H-3, -5, -6, -9	H-5, -6
5	H-3, -6, -8	H-3, -6, -8	H-3, -6, -8	H-3, -6, -8	H-3, -6, -8, -9
7	H-5, -6, -8, -9	H-5, -6, -8, -9	H-5, -6, -8, -9	H-5, -6, -8, -9	H-5, -6, -8, -9
8	H-5, -9	H-5, -9	H-5, -9	H-5, -9	Н-5, -9
9	H-8	H-8	H-8		Н-6, -8
10					H-3
1′	H-2'	H-2'	H-2'	H-2'	H-2'
2′	H-4'	H-1'			H-3'
3′		H-2'	H-4'	H-4'	H-2', -4'
4′	H-3', -5'	H-3'	H-3'	H-3'	H-3'
5′	H-6'	H-3', -4', -6'	H-4'	H-4'	H-4', -6'
6′					H-4'
1"	H-3", -5"	H-3", -5"	H-3", -5"	H-5"	
2"	H-4", -6"	H-6"	H-6"	H-6"	
3"	H-5"	H-5"	H-5"	H-5", 3"-OMe	
4"	H-2", -6"	H-2", -3", -5", -6"	H-2", -6", 4"-OMe	H-2", -5", -6"	
5"	H-3"	H-3"	H-3"		
6"	H-2", -4"	H-2"	H-2"	H-2"	
7"	H-8, -2", -6"	H-8, -2", -6"	H-8, -2", -6"	H-8, -2", -6"	
1′′′	H-3"", -5""	H-3"", -5""			
2′′′	H-6'''	H-6'''			
3′′′	H-5'''	H-5'"			
4′′′	H-2"', -6"', 4"'-OMe	H-2", -3", -5", -6",			
		4'''-OMe			
5′′′	H-3'''	H-3'"			
6′′′	H-2'''	H-2'''			
7′′′	H-2"", -6""	H-6', 2''', -6"'			

¹H NMR spectrum contained the same glucose signals as 1-5. However, the monoterpene moiety showed slight differences from those of the above. Thus, signals for one quaternary methyl at δ 1.31 (s, H-9), one olefinic methyl at $\delta 2.12$ (d, J = 1.8 Hz, H-10), one vinyl proton at $\delta 5.78$ (quintet, J = 1.8 Hz, H-3), one methine at $\delta 2.95$ (dd, J = 7.2, 2.5 Hz, H-5), and two methylenes at δ 2.63 (d, J = 9.3 Hz) and 3.55 (dd, J = 9.3, 7.2 Hz) (H-6) and δ 4.10 and 4.46 (d, J = 12.1 Hz) (H-8) showed the presence of a 2,7-dimethyl-7hydroxymethyl-1-oxygenatedbicyclo[3.1.1]hept-2-en-4-one nucleus. The presence of an α,β-unsaturated carbonyl group was confirmed by the ¹³C NMR signals for the double bond at δ 121.3 and 173.4 along with the carbonyl at δ 201.1. In a similar way, all the connectivities were supported by the HMBC spectrum (Table 3). The NOE relationships between Me-7 and H-3, Me-2 (H-10) accounted for the orientation of Me-7, which was suggested to be above the double bond (Fig. 2). Thus, mudanpioside-F possessed the structure 6.


On the basis of the specific rotational values of compounds 1-5, $[\alpha] - 5^{\circ}$ to -25° , compared to those of 7-10, $[\alpha] - 8^{\circ}$ to -15° , these new compounds had to have the same absolute configuration as the known compounds 7-10 [10].


EXPERIMENTAL

Mps: uncorr.; UV: EtOH; IR: KBr; ¹H NMR and ¹³C NMR: pyridine-d₅, TMS as int. standard.

Plant material. The root cortex of P. suffruticosa was purchased from a local market. A specimen of the plant (NDMC-790701) has been verified by Prof. C. S. Kuoh and deposited at the herbarium of the National Defense Medical Center, Taipei, Taiwan.

Extraction and separation. The root cortex (45 kg) was extracted with 95% followed by 70% EtOH (×4) at room temp. The combined EtOH extracts were concd under red. pres. to yield a dark-brown syrup which was partitioned between hexane and 90% MeOH. The 90% MeOH layer was concd and partitioned with EtOAc and H₂O. The aq. soln was again partitioned between n-BuOH and H₂O. The EtOAc layer was subjected to silica gel CC and eluted with CHCl₃ and CHCl₃-MeOH (97:3) to afford acetophenones. The residue was eluted with MeOH, combined with the n-BuOH extract and subjected to CC on silica gel with CHCl₃-MeOH, 19:1, 9:1, 17:3. Re-chromatography of the 1st fr. on prep Lobar RP-8 followed by HPLC sepn gave 9 (20.7 g) and 1 (0.2 g). In the same manner, the 2nd fr. furnished 10 (6.6 g), 2 (0.2 g) and 3 (4.4 g), and the 3rd fr. gave 11 (1.7 g),

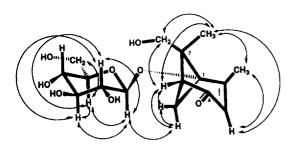


Fig. 2. NOESY correlations for mudanpioside-F (6).

7 (101.1 g), **8** (61.2 g), **4** (1.5 g), **5** (3.1 g) and **6** (0.6 g), successively.

Mudanpioside-A (1). Crystals, mp $115-121^{\circ}$, $[\alpha]_D$ - 6.885° (MeOH; c 0.061). Negative HRFAB-MS: calc.

for $C_{31}H_{33}O_{13}$, m/z 613.1921 [M – H]⁻, found 613.1932. UV λ_{max} nm (log ε): 233 (4.20), 257 (4.21); IR ν_{max} cm⁻¹: 3414, 1709, 1603, 1509; FAB-MS m/z (rel. int.): 613 [M – H]⁻ (15), 151 (58), 137 (15), 121 (100).

Mudanpioside-B (2). Crystals, mp 140–144°, $[\alpha]_D$ – 12.055° (MeOH; c0.0564). Negative HRFAB-MS: calc. for C₃₁H₃₃O₁₄, m/z 629.1875 [M – H]⁻, found 629.1862; UV λ_{max} nm (log ε): 258 (4.52); IR ν_{max} cm⁻¹: 3393, 1702, 1604, 1510; FAB-MS m/z (rel. int.): 629 [M – H]⁻ (100), 615 (14), 151 (12), 137 (32).

Mudanpioside-C (3). Crystals, mp 145–150°, [α]_D – 24.885° (MeOH; c 0.103). Negative HRFAB-MS: calc. for C₃₀H₃₁O₁₃, m/z 599.1764 [M – H]⁻, found 599.15; UV λ_{max} nm (log ε): 231 (4.23), 258 (4.22); IR ν_{max} cm⁻¹: 3369, 1704, 1606, 1591, 1511; FAB-MS m/z (rel. int.): 599 [M – H]⁻ (95), 281 (26), 239 (14), 179 (22), 153 (13), 137 (87), 136 (23), 121 (100).

Mudanpioside-D (4). Crystals, mp 122–127°, $[\alpha]_D$ – 15.238° (MeOH; c 0.105). Negative HRFAB-MS: calc. for C₂₄H₂₉O₁₂, m/z 509.1659 [M – H]⁻, found 509.1659; UV λ_{max} nm (log ε): 258 (4.20); IR ν_{max} cm⁻¹: 3393, 1702, 1603, 1510; FAB-MS m/z (rel. int.): 509 [M – H]⁻ (20), 151 (100), 137 (15), 121 (13).

Mudanpioside-E (5). Crystals, mp 134–140°, $[\alpha]_D$ – 19.800° (MeOH; c 0.100). Negative HRFAB-MS: calc. for C₂₄H₂₉O₁₃, m/z 525.1611 [M – H]⁻, found 525.1605; UV λ_{max} nm (log ε): 221 (3.92), 265 (3.17), 291 (3.46); IR ν_{max} cm⁻¹: 3381, 1701, 1594, 1512; FAB-MS m/z (rel. int.): 525 [M – H]⁻ (100), 197 (10), 167 (20).

Mudanpioside-F (6). Crystals, mp 153–159°, $[\alpha]_D$ + 3.306° (MeOH; c 0.0527). Negative HRFAB-MS: calc. for C₁₆H₂₃O₈, m/z 343.1393 [M – H]⁻, found 343.1384; UV λ_{max} nm (log ε): 252 (3.84); IR ν_{max} cm⁻¹: 3463, 3311, 1671. FAB-MS m/z (rel. int.): 343 [M – H]⁻ (100), 181 (15).

Acknowledgement—We thank the National Science Council, R.O.C., for support of this research.

REFERENCES

- Kubo, M., Tani, T., Kosoto, H., Kimura, Y. and Arichi, S. (1979) Shoyakugaku Zasshi 33, 155.
- 2. Li, Q. (1988) Chin. Trad. Herb. Drugs 19, 276.
- Chiangsu New Medical College (1977) Dictionary of Chinese Materia Medica, p. 1127. Shanghai Scientific and Technological Publishing Co., Shanghai.
- Chang, H. M. and But, P. H. (1986) Pharmacology and Applications of Chinese Materia Medica, Vol. 1, p. 165. World Scientific Publishing Co., Singapore.
- 5. Nagai, N. (1887) Yakugaku Zasshi 7, 288.
- 6. Nagai, N. (1887) Yakugaku Zasshi 8, 495.
- Kariyone, T., Takahashi, M. and Takaishi, K. (1956) Yakugaku Zasshi 76, 917.
- 8. Kariyone, T., Takahashi, M. and Takaishi, K. (1956) Yakugaku Zasshi 76, 920.
- Shibata, S., Inaba, M. and Aimi, N. (1966) Shoyakugaku Zasshi 20, 37.

- Kaneda, M., Iitaka, Y. and Shibata, S. (1972) Tetrahedron 28, 4309.
- 11. Kitagawa, I., Yoshikawa, M., Tsunaga, K. and Tani, T. (1979) Shoyakugaku Zasshi 33, 171.
- 12. Hayashi, T., Kurosawa, S., Shimizu, M. and Morita, N. (1985) Shoyakugaku Zasshi 39, 214.
- 13. Yu, J., Lang, H. Y. and Xiao, P. G. (1986) Acta Pharm. Sinica 21, 191.
- Arichi, S., Kubo, M., Matsuda, H., Tani, T., Tsunaga, K., Yoshikawa, M. and Kitagawa, I. (1979) Shoyakugaku Zasshi 33, 178.
- 15. Kubo, M., Matsuda, H., Izumi, S., Tani, T., Arichi, S., Yoshikawa, M. and Kitagawa, I. (1982) Shoyakugaku Zasshi 36, 70.
- 16. Kubo, M., Matsuda, H., Tani, T., Arichi, S. and Kitagawa, I. (1984) Shoyakugaku Zasshi 38, 276.
- 17. Kubo, M., Matsuda, H. and Matsuda, R. (1984) Shoyakugaku Zasshi 38, 307.

- 18. Kubo, M., Nagao, T., Matsuda, H., Tani, T., Arichi, S. and Kitagawa, I. (1985) Yakugaku Zasshi 105, 26.
- 19. Hirai, A., Terano, T., Hamazaki, T., Sajiki, J., Saito, H., Tahara, K., Tamura, Y. and Kumagai, A. (1983) *Thrombosis Res.* 31, 29.
- Ishida, H., Takamatsu, M., Tsuji, K. and Kosuge, T. (1987) Chem. Pharm. Bull. 35, 849.
- Lin, H. C. and Chern, H. M. (1991) Chin. Pharm. J. 43, 175.
- Yoshikawa, M., Uchida, E., Kawaguchi, A., Kitagawa, I. and Yamahara, J. (1992) Chem. Pharm. Bull. 40, 2248.
- Yoshikawa, M., Harada, E., Kawaguchi, A., Yamahara, J. and Kitagawa, I. (1993) Chem. Pharm. Bull. 41, 630.
- Hsu, H. Y., Chen, Y. P. and Hong, M. (1982) The Chemical Constituents of Oriental Herbs, Part I, p. 605.
 Oriental Healing Arts Institute, Los Angeles, CA.