

FLAVONOIDS FROM ESCHSCHOLTZIA CALIFORNICA

L. JAIN, M. TRIPATHI, V. B. PANDEY* and G. RÜCKER†

Department of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi-221 005, India; †Pharmazeutisches Institut der Universität Bonn, Kreuzbergweg 26, D-53115 Bonn, Germany

(Received 22 May 1995)

Key Word Index—Eschscholtzia californica; Papaveraceae; 2'-methoxyformononetin; 7-methoxy-2',4'-dihydroxyisoflavone; quercitrin.

Abstract—Two new isoflavones, together with quercitrin have been isolated from whole plants of *Eschscholtzia californica*. The structures of the new isoflavones were determined as 2'-methoxyformononetin and 7-methoxy-2',4'-dihydroxyisoflavone by spectroscopic methods.

INTRODUCTION

Eschscholtzia californica has been introduced into India as an annual herb [1]. A number of isoquinoline alkaloids [2–8] and the flavonoid, rutin [9], have earlier been reported from this species. We report herein the isolation of two new isoflavones and quercitrin from whole plants of E. californica.

RESULTS AND DISCUSSION

Chromatographic resolution of the ethyl acetate fraction furnished flavonoids A-C. Compound A(1), $C_{17}H_{14}O_5$ ([M]⁺ m/z 298) showed in its IR spectrum bands for hydroxyl (3200-3400 cm¹), methoxyl (2820 cm⁻¹) and carbonyl (1630 cm⁻¹) groups. UV absorption maxima, together with the chemical shift at $\delta 8.08$ (1H, s) in its ¹H NMR spectrum indicated it to be an isoflavone. The ¹H NMR exhibited the presence of two ortho- and four meta- coupled protons similar to that of 2'-hydroxydaidzein (2) [10], together with two methoxyl and one hydroxyl groups. The HR mass spectrum showed a [M]⁺ peak at m/z 298 and an intense peak at m/z 267 (ion a), characteristic of methoxyl or hydroxyl groups at the 2'-position [11]. Peaks at m/z 162 and 137 were due to RDA cleavage peaks of methoxyl groups in ring B of the molecule. The UV showed a bathochromic shift of 10 nm with NaOAc supported a hydroxyl group at the C-7 position.

Comparison of the 13 C NMR of compound A(1) with formononetin (3) [12] showed that the signal attributable to C-2' of formononetin was shifted downfield from δ 130.0 to 158.1 in A, and the signals of C-1', C-3' and C-5' were shifted to higher fields by 9.9, 15.0 and 9.1 ppm. [13]. The above data thus supported the positions of

methoxyl groups at C-2' and C-4' positions in 1. The structure of compound A is 7-hydroxy-2', 4'-methoxy isoflavone (1), which is 2'-methoxyformononetin.

Compound B (4), $C_{16}H_{12}O_5$ ([M]⁺ m/z 284) showed spectral data comparable to those of compound A (1).

The M_r , of compound B is 14 less than that of compound A indicating that it bears only one methoxyl group; this was substantiated by the ¹H NMR signal at 63.90 (3H, s). The fragment ion peaks formed by RDA cleavage appeared at m/z 151 and 134, the corresponding peaks of compound A appearing at m/z 137 and 162, respectively. This indicated that the lone methoxyl group is in ring A. The structure was thus deduced as 7-methoxy-2',4'-dihydroxy isoflavone (4).

The structures of compound A and B were further proved by methylation experiments. Both A and B on methylation furnished the identical compound 5 (co–TLC, superimposable IR). Both are new flavanoids.

Compound C, $C_{21}H_{20}O_{11}$ ([M]⁺ m/z 448) was identified as quercitrin [14] by a study of the spectral data, hydrolysis and direct comparison with an authentic sample (mmp, co-TLC and superimposable IR).

EXPERIMENTAL

E. californica Cham. was collected from Banaras Hindu University campus and identified by the Dept of Botany, Banaras Hindu University. A voucher specimen is kept in the department.

Plants were dried, powdered and extracted with MeOH in a Soxhlet extractor. Alkaloids and non-alkaloids were separated by usual methods. The non-alkaloidal fr. was chromatographed on a silica gel column. The benzene-EtOAc (1:1), (1:2) and EtOAc eluates furnished compounds A,B and C, respectively.

2'-Methoxy formononetin (1). Recrystallized from MeOH, yellow granules, mp 195-97°. IR $v_{\rm max}^{\rm KBr}$ (cm⁻¹): 3200-3400, 2820, 1630, 1610, 1590, 1570. UV $\lambda_{\rm max}^{\rm MeOH}$ nm

^{*}Author to whom correspondence should be addressed.

(log ε): 241 (4.58), 248 (4.65), 285 (4.10), 313 sh (3.90); $\lambda_{\text{max}}^{\text{MeOH}+\text{NaOAC}}$ nm: 260, 314. 300 MHz ^{1}H NMR (DMSO-d₆): δ 3.78 (3H, s,-OMe); 3.69 (3H, s,-OMe), 8.08 (1H, s, C-2-H), 7.92 (1H, d, J = 8.8 Hz, C-5-H), 6.85 (1H, d, J = 2.2 Hz, C-8-H), 6.92 (1H, dd, J = 8.8, 2.2 Hz, C-6-H), 7.13 (1H, d, J = 8.8 Hz C-6'-H), 6.62 (1H, d, J = 2.2 Hz, C-3'-H), 6.55 (1H, dd, J = 8.8, 2.2 Hz, C-5'-H). ^{13}C NMR (DMSO-d₆): δ 153.5 (C-2), 121.3 (C-3), 174.1 (C-4), 116.4 (C-4a), 126.9 (C-5), 114.8 (C-6), 162.1 (C-7), 101.9 (C-8), 157.2 (C-8a), 113.3 (C-1'), 158.1 (C-2'), 98.5 (C-3'), 160.4 (C-4'), 104.4 (C-5'), 131.8 (C-6'), 55.1 (-OCH₃), 55.4 (-OCH₃). HRMS (rel. int.): m/z 298.0864 (C₁₇H₁₄O₅), 297 (12), 267.0608 (24), 162.0669 (14), 161.0596 (30), 152.0823 (36), 151.0765 (97), 137.0232 (100).

7-Methoxy-2',4'-dihydroxy isoflavone (4). Recrystallized from MeOH, yellowish granules, mp 213.15°. IR $v_{\text{max}}^{\text{KBr}}$ (cm⁻¹): 3350–3600, 2800, 1630, 1610, 1550; UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm (log ε): 247 (4.8), 262 (4.5), 289 (4.0), 313 (3.5); $\lambda_{\text{max}}^{\text{MeOH+NaOMe}}$ nm: 248, 268, 310, 338. 300 MHz ¹H NMR (DMSO-d₆): δ 3.90 (3H, s, – OMe), 8.19 (1H, s, C-2-H),

7.95 (1H, d, J = 8.6 Hz, C-5-H), 7.14 (1H, d, J = 2.2 Hz, C-8-H), 7.07 (1H, dd, J = 8.6 Hz, 2.2 Hz, C-6-H), 6.95 (1H, d, J = 8.6 Hz, C-6'-H), 6.36 (1H, d, J = 2.2 Hz, C-3'-H), 6.27 (1H, dd, J = 8.6 Hz, 2.2Hz, C-5'-H), 9.2 (1H, br,-OH), 9.3 (1H, br,-OH). 13 C NMR (DMSO-d₆): δ 154.2 (C-2), 121.8 (C-3), 174.8 (C-4), 117.3 (C-4a), 126.6 (C-5), 114.3 (C-6), 163.3 (C-7), 102.7 (C-8), 156.0 (C-8a), 109.7 (C-1'), 157.1 (C-2'), 100.3 (C-3'), 158.1 (C-4'), 106.1 (C-5'), 131.7 (C-6'), 55.9 (OMe). HRMS (rel. int.): m/z 284.0684 ([M] $^+$, C₁₆H₁₂O₅) (41); 267.0661 (17); 151.0393 (100), 134.0372(13).

Methylation of (1) and (4). Methylation with (Me)₂SO₄ and K₂CO₃ by refluxing under anhydrous conditions with dry Me₂CO gave methylated compounds identical to compound 5 (co-TLC and superimposable IR).

REFERENCES

- The Wealth of India, Raw Materials (1952) Vol III p. 202 CSIR, New Delhi.
- 2. Listy, C. (1955) Coll. Czech. Chem. Commun 20, 27
- 3. Gertig, H. (1964) Acta, Polon, Pharm, 21, 127.
- Manske, R. H. F. and Shin, K. H. (1965) Can J. Chem. 43, 2180.
- 5. Gertig, H. (1965) Acta. Polon. Pharm. 22, 367.
- 6. Gertig, H. (1965) Acta. Polon. Pharm. 22, 443.
- Slavik, J. and Dolejs, L. (1973) Coll. Czech. Chem. Commun. 38, 3514.
- 8. Urzua, A. and Mendoza L. (1986). J. Nat. Prod. 49, 922.
- Sando, C. E. and Bartlett, H. H. (1920) J. Biol. Chem. 41, 495.
- 10. Woodward, M. D. (1980) Phytochemistry 19, 921.
- Harborne, J. B. and Mabry, T. J. (1982) The Flavonoids; Advances in Research, p. 563. Chapman and Hall, London.
- Kinjo, J., Furusawa, J., Baba, J., Takeshita, T., Yamasaki, M. and Nohara, T. (1987). Chem. Pharm. Bull. 35, 4846.
- Yahara, S., Ogata, T., Saijo, R., Konishi, R., Yamahara, J., Miyahara, K. and Nohara, T. (1989) Chem. Pharm. Bull. 37, 979.
- Pandey, V. B., Singh, J. P., Khosa, R. L. and Shah,
 A. H. (1985) J. Chem. Soc. Pakistan 7, 33.